首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进天牛须算法的电力攀爬机器人运动学逆解算法
引用本文:都海波,葛展展,张金锋,谢枫. 基于改进天牛须算法的电力攀爬机器人运动学逆解算法[J]. 控制与决策, 2022, 37(9): 2217-2225
作者姓名:都海波  葛展展  张金锋  谢枫
作者单位:合肥工业大学电气与自动化工程学院,合肥230009;国网安徽省电力有限公司,合肥230061;中国能源建设集团安徽省电力设计院有限公司,合肥230022
基金项目:安徽省自然科学基金项目(2008085UD03,1808085MF180);国家自然科学基金项目(62073113,62003122, 61673153);中央高校基本科研业务费资金项目(PA2020GDKC0016).
摘    要:为了提高电力系统的自动化水平,减轻电力工人在检修高压输电系统时的劳动强度,同时保障电力工人人身安全,提出并设计一种可以攀爬电力铁塔的六自由度关节式机器人,针对该构型进行运动学分析和求解.为解决传统的解析法用于机械臂逆运动学求解过程中存在操作繁琐和奇异点无法逆运算等问题,提出一种基于改进天牛须算法的电力攀爬机器人运动学逆解算法.首先,对电力攀爬机器人进行DH建模,得到正运动学方程;然后,使用正运动学方程和目标位姿建立代价函数,采用改进天牛须算法对代价函数优化;最后,使用Matlab实现此算法进行仿真验证.实验结果表明,与传统的天牛须算法、改进遗传算法以及改进粒子群算法相比,所提出算法具有较好的收敛性,求解精度较高.

关 键 词:电力攀爬机器人  运动机构设计  改进天牛须算法  轨迹规划

Inverse kinematics solution algorithm of electric climbing robot based on improved beetle antennae search algorithm
DU Hai-bo,GE Zhan-zhan,ZHANG Jin-feng,XIE Feng. Inverse kinematics solution algorithm of electric climbing robot based on improved beetle antennae search algorithm[J]. Control and Decision, 2022, 37(9): 2217-2225
Authors:DU Hai-bo  GE Zhan-zhan  ZHANG Jin-feng  XIE Feng
Affiliation:College of Electrical and Automation Engineering,Hefei University of Technology,Hefei 230009,China;State Grid Anhui Electric Power Co., Ltd,Hefei 230061,China; China Energy Construction Group Anhui Electric Power Design Institute Co., Ltd,Hefei 230022,China
Abstract:In order to improve the automation level of power systems, reduce the labor intensity of power workers in the maintenance of high voltage transmission system, and ensure their personal safety, a 6-DOF articulated robot for climbing power tower is designed and proposed. Kinematics analysis and solution are carried out for the configuration. In order to solve that the traditional analytical method used in the inverse kinematics of manipulator has the problem of complicated operation and the problem that singular points can not be inverse operation, this paper presents an inverse kinematics algorithm for the electric climbing robot based on the improved beetle antennae search algorithm. The DH model of the electric climbing robot is established, and the forward kinematics equation is obtained. A cost function is established according to the positive kinematics equation and the target pose, the cost function is optimized using the improved beetle antennae search algorithm, and Matlab is used to realize this algorithm for simulation verification. Simulation results show that contrasting with the traditional beetle antennae search algorithm, the improved genetic algorithm and the improved particle swarm optimization algorithm, the inverse kinematics solution algorithm of the electric climbing robot based on the improved beetle antennae search algorithm has good convergence and high solution accuracy, which can be used in the robot real-time control system.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号