首页 | 本学科首页   官方微博 | 高级检索  
     

基于二阶表征的条件对抗域适应网络
引用本文:徐春荞,张冰冰,李培华. 基于二阶表征的条件对抗域适应网络[J]. 计算机应用研究, 2021, 38(10): 3040-3043,3048. DOI: 10.19734/j.issn.1001-3695.2021.01.0046
作者姓名:徐春荞  张冰冰  李培华
作者单位:大连理工大学 信息与通信工程学院,辽宁 大连 116024
基金项目:国家自然科学基金资助项目(61971086)
摘    要:域对抗学习是一种主流的域适应方法,它通过分类器和域判别器来学习具有可区分性的域不变特征;然而,现有的域对抗方法大多利用一阶特征来学习域不变特征,忽略了具有更强表达能力的二阶特征.提出了一种条件对抗域适应网络,通过联合建模图像的二阶表征以及特征和分类器预测之间的互协方差以便更有效地学习具有区分性的域不变特征;此外,引入了熵条件来平衡分类器预测的不确定性,以保证特征的可迁移性.提出的方法在两个常用的域适应数据库Office-31和ImageCLEF-DA上进行了验证,实验结果表明该方法优于同类方法并获得了领先的性能.

关 键 词:域适应  二阶表征  互协方差  对抗网络
收稿时间:2021-01-14
修稿时间:2021-09-11

Conditional adversarial domain adaptation networks based on second-order representation
Xu Chunqiao,Zhang Bingbing and Li Peihua. Conditional adversarial domain adaptation networks based on second-order representation[J]. Application Research of Computers, 2021, 38(10): 3040-3043,3048. DOI: 10.19734/j.issn.1001-3695.2021.01.0046
Authors:Xu Chunqiao  Zhang Bingbing  Li Peihua
Affiliation:School of Information and Communication Engineering, Dalian University of Technology,,
Abstract:Domain adversarial learning is a mainstream approach of domain adaptation, which learns discriminative domain-invariant feature representation through classifier and domain discriminator. However, existing adversarial domain adaptation methods often use first-order features to learn domain-invariant feature representation, ignoring the second-order features with more powerful representative ability. This paper proposed conditional adversarial domain adaptation networks based on second-order representation, which modeled the second-order moments of features and the cross-covariance between features and classifier predictions for more effectively learning discriminative domain-invariant features. Moreover, it introduced entropy conditioning to guarantee the transferability. The proposed method was evaluated on two commonly used datasets Office-31 and ImageCLEF-DA. Experiments show that the proposed method outperforms its counterpart.
Keywords:domain adaptation   second-order representation   cross-covariance   adversarial network
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号