首页 | 本学科首页   官方微博 | 高级检索  
     

基于堆叠分类器的心电异常监测模型设计
引用本文:秦静,左长青,汪祖民,季长清,王宝凤. 基于堆叠分类器的心电异常监测模型设计[J]. 计算机应用, 2021, 41(3): 887-890. DOI: 10.11772/j.issn.1001-9081.2020060760
作者姓名:秦静  左长青  汪祖民  季长清  王宝凤
作者单位:1. 大连大学 信息工程学院, 辽宁 大连 116622;2. 大连大学 物理科学与技术学院, 辽宁 大连 116622;3. 周口师范学院 网络工程学院, 河南 周口 466001
基金项目:辽宁省重点研发计划项目;国家自然科学基金资助项目;辽宁省自然科学基金资助项目
摘    要:针对传统的人工监测心脏疾病的方法对资深医生的依赖性强,需要一定的先验知识,且其监测疾病的速度和准确性有待提高等问题,提出了一种基于堆叠分类器的心电(ECG)监测算法来用于心脏异常的判定.首先,将多种机器学习算法的优势相结合,通过叠加分类器的方式集成起来,从而弥补了单个机器学习算法学习的局限性;其次,使用合成少数过采样技...

关 键 词:心电监测  模型融合  合成少数过采样技术  集成学习  机器学习
收稿时间:2020-06-08
修稿时间:2020-10-19

Design of abnormal electrocardiograph monitoring model based on stacking classifier
QIN Jing,ZUO Changqing,WANG Zumin,JI Changqing,WANG Baofeng. Design of abnormal electrocardiograph monitoring model based on stacking classifier[J]. Journal of Computer Applications, 2021, 41(3): 887-890. DOI: 10.11772/j.issn.1001-9081.2020060760
Authors:QIN Jing  ZUO Changqing  WANG Zumin  JI Changqing  WANG Baofeng
Affiliation:1. College of Information Engineering, Dalian University, Dalian Liaoning 116622 China;2. College of Physical Science and Technology, Dalian University, Dalian Liaoning 116622, China;3. School of Network Engineering, Zhoukou Normal University, Zhoukou Henan 466001, China
Abstract:The traditional methods of manual heart disease monitoring are highly dependent on senior doctors with prior knowledge, and their speeds and accuracies of monitoring disease need to be improved. In order to solve these problems, a ElectroCardioGraph (ECG) monitoring algorithm based on stack classifier was proposed for the determination of cardiac anomalies. Firstly, the advantages of various machine learning algorithms were combined, and these algorithms were integrated by the way of stack classifier to make up for the limitation of learning by single machine learning algorithm. Then, Synthetic Minority Over-sampling TEchnique (SMOTE) was used to perform data augmentation to the original dataset and balance the number of samples of various diseases, so as to improve the data balance. The proposed algorithm was compared with other machine learning algorithms on MIT-BIH dataset. Experimental results show that the proposed algorithm can improve the accuracy and speed of abnormal ECG monitoring.
Keywords:ElectroCardioGraph (ECG) monitoring  model fusion  Synthetic Minority Over-sampling TEchnique (SMOTE)  integrated learning  machine learning  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号