首页 | 本学科首页   官方微博 | 高级检索  
     

基于单值中智集的协同过滤推荐算法
引用本文:李鹏,苏忻洁,白世贞. 基于单值中智集的协同过滤推荐算法[J]. 计算机应用研究, 2021, 38(12): 3667-3672. DOI: 10.19734/j.issn.1001-3695.2021.06.0199
作者姓名:李鹏  苏忻洁  白世贞
作者单位:哈尔滨商业大学 工商管理博士后科研流动站,哈尔滨 150028;哈尔滨商业大学 管理学院,哈尔滨 150028;哈尔滨商业大学 管理学院,哈尔滨 150028
基金项目:黑龙江省自然科学基金项目(LH2019F043);哈尔滨商业大学青年科研项目(2019DS012)
摘    要:为缓解推荐系统中用户模糊评价带来的推荐准确性低的问题,构建基于单值中智集的协同过滤推荐模型.首先,构建用户—项目评分矩阵,划分用户评分等级,并将用户评分按照单值中智计算公式转换得到评分对应的真值隶属度、不确定值隶属度、非真值隶属度.然后,引入极端评价计算公式,将其作为极端评分惩罚系数,得到基于单值中智数分数的相似度计算公式.最后,结合杰卡德相关系数得到最终用户相似度.基于单值中智集的协同过滤推荐方法在公开数据集MovieLens上比较验证,实验结果发现融合单值中智集的方法在RMSE、MAE评价指标上均比其他方法有2%~3%的提升,能够有效提高推荐精度,更好地处理模糊问题.

关 键 词:协同过滤  单值中智集  模糊评价  相似度  推荐系统
收稿时间:2021-06-10
修稿时间:2021-11-17

Collaborative filtering recommendation algorithm based on single-valued neutrosophic set
LI Peng,SU Xin-jie and BAI Shi-zhen. Collaborative filtering recommendation algorithm based on single-valued neutrosophic set[J]. Application Research of Computers, 2021, 38(12): 3667-3672. DOI: 10.19734/j.issn.1001-3695.2021.06.0199
Authors:LI Peng  SU Xin-jie  BAI Shi-zhen
Affiliation:Postdoctoral Mobile Station of Business Administration,Harbin University of Commerce,,
Abstract:User fuzzy evaluation in recommendation system usually cause low recommendation accuracy, in order to alleviate the problem, this paper designed a collaborative filtering recommendation model based on single-valued neutrosophic set. Firstly, this paper constructed a user-item scoring matrix, divided user rating, and converted the user rating according to the single-valued neutrosophic set calculation formula in order to obtain the true value membership degree, uncertain value membership degree and non-true value membership degree respectively. Next, this paper introduced the calculation formula of extreme evaluation as the penalty coefficient of extreme rating, based on which the similarity calculation formula is designed according to the single-valued neutrosophic set score. Finally, this model obtained the final-user similarity by combining the Jaccard correlation coefficient. The proposed collaborative filtering recommendation method was compared with the traditional similarity recommendation methods on the public data set MovieLens. The experimental results show that the proposed method is improved about 2-3 percent in index of RMSE and MAE, and the recommendation accuracy is efficiently promoted to deal with the fuzzy problem.
Keywords:collaborative filtering   single-valued neutrosophic set   fuzzy evaluation   similarity   recommender system
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号