首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度图网络的编译器向量化启发式算法
引用本文:冯晖,王亚刚. 基于深度图网络的编译器向量化启发式算法[J]. 计算机应用研究, 2021, 38(8): 2349-2353. DOI: 10.19734/j.issn.1001-3695.2020.12.0413
作者姓名:冯晖  王亚刚
作者单位:西安邮电大学 计算机学院,西安710121
基金项目:国家自然科学基金资助项目(61972314)
摘    要:针对现有的深度学习模型将程序代码考虑为一个串行序列而错失较大性能优化空间的问题,提出了一种新的基于深度图网络的程序启发式优化方法.该方法采用图神经网络对程序的数据和依赖图进行建模,自动从源代码中抽取有效程序特征,然后再将抽取的特征输入下游模型进行循环向量化参数预测.在LLVM循环向量测试集上,所提出的方法取得了2.08倍的加速比,与现有方法相比提高了12%的性能.

关 键 词:启发式优化  图神经网络  深度学习  编译器向量化
收稿时间:2020-12-22
修稿时间:2021-01-29

Using graph neural networks to enhance compiler code vectorization heuristics
Feng Hui and Wang Yagang. Using graph neural networks to enhance compiler code vectorization heuristics[J]. Application Research of Computers, 2021, 38(8): 2349-2353. DOI: 10.19734/j.issn.1001-3695.2020.12.0413
Authors:Feng Hui and Wang Yagang
Abstract:To address the problem that the existing deep learning model considered the program code as a serial sequence and missed a larger performance optimization space, this paper proposed a new heuristic optimization method based on the depth graph network. This method used graph neural network to model the program data and dependency graph, automatically extracted effective program features from the source code, and then input the extracted features into the downstream model for cyclic vectorization parameter prediction. On the LLVM cyclic vector test set, the proposed method achieves a speedup of 2.08 times, which improves the performance by 12% compared with the existing method.
Keywords:heuristic optimization   graph neural network   deep learning   compiler vectorization
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号