首页 | 本学科首页   官方微博 | 高级检索  
     

基于多分辨率特征和时频注意力的环境声音分类
引用本文:刘慧,李小霞,何宏森. 基于多分辨率特征和时频注意力的环境声音分类[J]. 计算机应用研究, 2021, 38(12): 3569-3573. DOI: 10.19734/j.issn.1001-3695.2021.05.0184
作者姓名:刘慧  李小霞  何宏森
作者单位:西南科技大学 信息工程学院,四川 绵阳621010;西南科技大学 信息工程学院,四川 绵阳621010;西南科技大学 特殊环境机器人技术四川省重点实验室,四川 绵阳621010
基金项目:国家自然科学基金资助项目(62071399)
摘    要:针对环境声音分类(ESC),提出了一种基于多分辨率特征和时频注意力的卷积神经网络环境声音分类方法.首先,相较单一分辨率的谱图,多通道多分辨率特征可以丰富特征信息,实现不同特征分辨率之间信息互补,增强特征的表达能力;其次,针对声信号提出了一种时频注意力模块,该模块先利用不同大小的一维卷积分别关注时域和频域有效信息,再用二维卷积将两者进行融合,从而抑制环境声中背景噪声并消除由多通道多分辨率带来的冗余信息干扰.实验结果表明,在ESC-10和ESC-50两个基准数据集上的分类准确率达到了98.50%和88.46%,与现有的最新方法相比分别提高了2.70%和0.76%.

关 键 词:环境声音分类  卷积神经网络  时频注意力  多通道特征  多分辨率特征
收稿时间:2021-05-12
修稿时间:2021-11-18

Environmental sound classification based on multi-resolution features and time-frequency attention
Liu Hui,Li Xiaoxia and He Hongsen. Environmental sound classification based on multi-resolution features and time-frequency attention[J]. Application Research of Computers, 2021, 38(12): 3569-3573. DOI: 10.19734/j.issn.1001-3695.2021.05.0184
Authors:Liu Hui  Li Xiaoxia  He Hongsen
Affiliation:School of Information Engineering, Southwest University of Science and Technology,,
Abstract:For ESC, this paper proposed a convolutional neural network method based on multi-resolution features and time-frequency attention module. Firstly, compared with the single-resolution spectrogram, multi-channel and multi-resolution features could enrich feature information, realize information complementarity among different feature resolutions, and enhance the expression ability of features. Secondly, for sound signals, this paper proposed a time-frequency attention module. The module firstly used different sizes of one-dimensional convolution to focus on the effective information in the time domain and frequency domain, and then used two-dimensional convolution to fuse the two-domain information to suppress the background noise in the environment sound and eliminate redundant information interference caused by multi-channel and multi-resolution features. The experimental results show that the classification accuracy rates on the two benchmark data sets of ESC-10 and ESC-50 have reached 98.50% and 88.46%, which are 2.70% and 0.76% higher than the latest methods.
Keywords:environmental sound classification(ESC)   convolution neural network(CNN)   time-frequency attention module   multi-channel features   multi-resolution features
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号