首页 | 本学科首页   官方微博 | 高级检索  
     

自适应差分进化算法及对动态环境经济调度问题应用
引用本文:武慧虹,钱淑渠. 自适应差分进化算法及对动态环境经济调度问题应用[J]. 计算机应用研究, 2021, 38(5): 1443-1448,1454. DOI: 10.19734/j.issn.1001-3695.2020.05.0120
作者姓名:武慧虹  钱淑渠
作者单位:安顺学院数理学院,贵州安顺561000;贵州财经大学理学院,贵阳550025
基金项目:国家自然科学基金资助项目(61762001);贵州省教育厅创新群体重大项目(黔教合KY字[2019]069,[2018]034);贵州省教育厅青年科技人才成长项目(黔教合KY字[2020]143号);贵州省科技计划联合基金资助项目(黔科合LH字[2017]7047号)。
摘    要:为了应对动态环境经济调度(DEED)问题的高维性和大规模约束性,提出了一种自适应多目标差分进化算法(ADEA)。设计自适应差分交叉模块,提出改进的current to best/1交叉策略提高种群的多样性,有效地提高传统进化算法的探索与开采能力,提出一种修补策略处理功率平衡约束和爬坡率约束。为了验证该方法的有效性,数值仿真将ADEA应用于10机系统进行测试,并与同类算法展开比较,仿真结果表明ADEA具有较好的收敛能力,获得的Pareto前沿具有较好的均匀性和延展性,通过模糊决策获得的最好折中解能为电力系统调度人员提供较为合理的调度方案。

关 键 词:动态环境经济调度  自适应交叉  差分进化  约束多目标优化  PARETO前沿
收稿时间:2020-05-07
修稿时间:2021-04-14

Adaptive different evolutionary algorithm and its application of dynamic emission economic dispatch problem
WU Hui-hong and Qian Shuqu. Adaptive different evolutionary algorithm and its application of dynamic emission economic dispatch problem[J]. Application Research of Computers, 2021, 38(5): 1443-1448,1454. DOI: 10.19734/j.issn.1001-3695.2020.05.0120
Authors:WU Hui-hong and Qian Shuqu
Affiliation:(School of Sciences,Anshun University,Anshun Guizhou 561000,China;School of Sciences,Guizhou University of Finance&Econo-mics,Guiyang 550025,China)
Abstract:In order to solve the dynamic emission economic dispatch(DEED)problem with high-dimensional and large scale constraints,this paper proposed an adaptive multiobjective differential evolutionary algorithm(ADEA).The ADEA designed an adaptive differential crossover module,developed an improving current to best/1 crossover scheme to enhance the diversity of population.These strategies improved the exploration and exploitation ability of the ADEA,it also applied a repair strategy to deal with the equality and inequality constrains in DEED problem.Numerical experiments tested the effectiveness of ADEA on 10-unit system,and compared with several peer algorithms.Simulation results indicate that ADEA has good convergence.The uniformity and ductility of the Pareto front obtained by ADEA is better than that of the compared algorithms.It provides a more efficient scheduling decision-making method for power system dispatcher by a fuzzy decision method.
Keywords:dynamic emission economic dispatch(DEED)  adaptive crossover  differential evolution  constrained multiobjective optimization  Pareto front
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号