首页 | 本学科首页   官方微博 | 高级检索  
     

面向多核CPU和GPU平台的数据库星形连接优化
引用本文:刘专,韩瑞琛,张延松,陈跃国,张宇. 面向多核CPU和GPU平台的数据库星形连接优化[J]. 计算机应用, 2021, 41(3): 611-617. DOI: 10.11772/j.issn.1001-9081.2020091430
作者姓名:刘专  韩瑞琛  张延松  陈跃国  张宇
作者单位:1. 数据工程与知识工程教育部重点实验室(中国人民大学), 北京 100872;2. 中国人民大学 信息学院, 北京 100872;3. 中国人民大学中国调查与数据中心, 北京 100872;4. 中国气象局 国家卫星气象中心, 北京 100081
基金项目:国家自然科学基金资助项目;北京市自然科学基金资助项目
摘    要:针对联机分析处理(OLAP)中事实表与多个维表之间的星形连接执行代价较高的问题,提出了一种在先进的多核中央处理器(CPU)和图形处理器(GPU)上的星形连接优化方法.首先,对于多核CPU和GPU平台的星形连接中的物化代价问题,提出了基于向量索引的CPU和GPU平台上的向量化星形连接算法;然后,通过面向CPU cache...

关 键 词:联机分析处理  星形连接  向量化查询处理  向量压缩技术  异构计算
收稿时间:2020-09-07
修稿时间:2020-10-16

Database star-join optimization for multicore CPU and GPU platforms
LIU Zhuan,HAN Ruichen,ZHANG Yansong,CHEN Yueguo,ZHANG Yu. Database star-join optimization for multicore CPU and GPU platforms[J]. Journal of Computer Applications, 2021, 41(3): 611-617. DOI: 10.11772/j.issn.1001-9081.2020091430
Authors:LIU Zhuan  HAN Ruichen  ZHANG Yansong  CHEN Yueguo  ZHANG Yu
Affiliation:1. Key Laboratory of Data Engineering and Knowledge Engineering(Renmin University of China), Beijing 100872, China;2. School of Information, Renmin University of China, Beijing 100872, China;3. National Survey Research Center at Renmin University of China, Beijing 100872, China;4. National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China
Abstract:Focusing on the high execution cost of star-join between the fact table and multiple dimension tables in On-line Analytical Processing (OLAP), a star-join optimization technique was proposed for advanced multicore CPU (Central Processing Unit) and GPU (Graphics Processing Unit). Firstly, the vector index based vectorized star-join algorithm on CPU and GPU platforms was proposed for the intermediate materialization cost problem in star-join in multicore CPU and GPU platforms. Secondly, the star-join operation based on vector granularity was presented according to the vector division for CPU cache size and GPU shared memory size, so as to optimize the vector index materialization cost in star-join. Finally, the compressed vector index based star-join algorithm was proposed to compress the fixed-length vector index to the variable-length binary vector index, so as to improve the storage access efficiency of the vector index in cache under low selection rate. Experimental results show that the vectorized star-join algorithm achieves more than 40% performance improvement compared to the traditional row-wise or column-wise star-join algorithms on multicore CPU platform, and the vectorized star-join algorithm achieves more than 15% performance improvement compared to the conventional star-join algorithms on GPU platform; in the comparison with the mainstream main-memory databases and GPU databases, the optimized star-join algorithm achieves 130% performance improvement compared to the optimal main-memory database Hyper, and achieves 80% performance improvement compared to the optimal GPU database OmniSci. It can be seen that the vector index based star-join optimization technique effectively improves the multiple table join performance, and compared with the traditional optimization techniques, the vector index based vectorized processing improves the data storage access efficiency in small cache, and the compressed vector further improves the vector index access efficiency in cache.
Keywords:On-Line Analytical Processing (OLAP)  star-join  vectorized query processing  vector compression technique  heterogeneous computing  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号