首页 | 本学科首页   官方微博 | 高级检索  
     

基于SSD的小目标检测改进算法
引用本文:程凯强,张旭,寇旭鹏. 基于SSD的小目标检测改进算法[J]. 计算机与现代化, 2021, 0(7): 77-82. DOI: 10.3969/j.issn.1006-2475.2021.07.014
作者姓名:程凯强  张旭  寇旭鹏
作者单位:上海工程技术大学机械与汽车工程学院,上海 201620;云南农业大学大数据学院,云南 昆明 650201
摘    要:目标检测算法因数据存在分辨率较低、噪声等干扰,不能有效利用特征图中目标的边缘纹理和语义信息,导致小目标检测效果较差.为此,本文提出一种基于SSD的小目标检测改进算法.首先,采用普通卷积和深度可分离卷积进行同步特征学习并融合,获得信息丰富的浅层特征.然后,在固有的5个尺度的特征层后添加通道和空间自适应权重分配网络,使得模...

关 键 词:小目标检测  深度可分离卷积  多尺度  权重分配网络  SSD模型
收稿时间:2021-08-02

An Improved Algorithm for Small Target Detection Based on SSD
CHENG Kai-qiang,ZHANG Xu,KOU Xu-peng. An Improved Algorithm for Small Target Detection Based on SSD[J]. Computer and Modernization, 2021, 0(7): 77-82. DOI: 10.3969/j.issn.1006-2475.2021.07.014
Authors:CHENG Kai-qiang  ZHANG Xu  KOU Xu-peng
Abstract:Target detection algorithms cannot effectively use the edge texture and semantic information of small targets in the feature map due to low data resolution and noise interference, resulting in poor detection results. To solve this problem, this paper proposes an improved algorithm for small target detection based on SSD. Firstly, common convolution and deep separable convolution are used for synchronous feature learning and fusion, and the information-rich shallow features are obtained. Then  the channel and space adaptive weight distribution network is added after the inherent 5 scale feature layer, so that the model pays more attention to the important feature information of the channel and space. Finally, the candidate target frame is subjected to non-maximum suppression screening to obtain the detection result. By comparing the improved method with Faster RCNN, SSD and other methods on the VOC2007 data set, the method reduces the false detection rate of small targets and improves the accuracy of the overall target. The proposed model mAP reaches 78.94%. It is 3.13% higher than the SSD model.
Keywords:small target detection  depth separable convolution  multi-scale  weight distribution network  SSD  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机与现代化》浏览原始摘要信息
点击此处可从《计算机与现代化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号