首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度小波去噪自动编码器的轴承智能故障诊断方法
引用本文:李晓花,江星星. 基于深度小波去噪自动编码器的轴承智能故障诊断方法[J]. 计算机应用与软件, 2021, 38(2): 145-151,190. DOI: 10.3969/j.issn.1000-386x.2021.02.025
作者姓名:李晓花  江星星
作者单位:商丘职业技术学院 河南 商丘 476000;苏州大学城市轨道交通学院 江苏 苏州 215137
摘    要:针对原始振动数据无监督特征学习问题,提出一种深度小波去噪自动编码器与鲁棒极限学习机相结合的滚动轴承的智能故障诊断方法.利用小波函数作为非线性激活函数设计小波去噪自动编码器,从而有效地捕获信号特征;利用多个小波去噪自动编码器构造一个深度小波去噪自动编码器来增强无监督特征学习能力;采用鲁棒极限学习机作为分类器,对不同的轴承...

关 键 词:智能故障诊断  滚动轴承  深度小波去噪自动编码器  极限学习机  无监督特征学习

AN INTELLIGENT FAULT DIAGNOSIS METHOD FOR BEARING BASED ON DEEP WAVELET DENOISING AUTOMATIC ENCODER
Li Xiaohua,Jiang Xingxing. AN INTELLIGENT FAULT DIAGNOSIS METHOD FOR BEARING BASED ON DEEP WAVELET DENOISING AUTOMATIC ENCODER[J]. Computer Applications and Software, 2021, 38(2): 145-151,190. DOI: 10.3969/j.issn.1000-386x.2021.02.025
Authors:Li Xiaohua  Jiang Xingxing
Affiliation:(Shangqiu Polytechnic,Shangqiu 476000,Henan,China;School of Rail Transportation,Soochow University,Suzhou 215137,Jiangsu,China)
Abstract:Aiming at unsupervised feature learning of original vibration data,an intelligent fault diagnosis method for rolling bearings is proposed,which combines deep wavelet denoising automatic encoder with robust limit learning machine.The wavelet function was used as a non-linear activation function to design an automatic wavelet de-noising coder to capture the signal features effectively;a deep wavelet denoising automatic coder was constructed by using multiple wavelet denoising automatic coders to enhance unsupervised feature learning ability;robust limit learning machine was used as classifier to classify and identify different bearing faults.The experimental results show that the proposed method is superior to the traditional method and the standard deep learning method under the condition of unsupervised feature learning of the original vibration data.
Keywords:Intelligent fault diagnosis  Rolling bearing  Deep wavelet auto-encoder  Limit learning machine  Unsupervised feature learning
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号