首页 | 本学科首页   官方微博 | 高级检索  
     

解耦表征学习研究进展
引用本文:成科扬,孟春运,王文杉,师文喜,詹永照. 解耦表征学习研究进展[J]. 计算机应用, 2021, 41(12): 3409-3418. DOI: 10.11772/j.issn.1001-9081.2021060895
作者姓名:成科扬  孟春运  王文杉  师文喜  詹永照
作者单位:江苏大学 计算机科学与通信工程学院,江苏 镇江 212013
社会安全风险感知与防控大数据应用国家工程实验室(中国电子科学研究院),北京 100041
新疆联海创智信息科技有限公司,乌鲁木齐 830011
基金项目:国家自然科学基金资助项目(61972183);社会安全风险感知与防控大数据应用国家工程实验室主任基金资助项目
摘    要:解耦表征学习旨在对影响数据形态的关键因素进行建模,使得某一关键因素的变化仅仅引起数据在某项特征上的变化,而其他的特征不受影响,这有利于应对机器学习在模型可解释性、对象生成和操作以及零样本学习等问题上的挑战,因此解耦表征学习一直是机器学习领域的一个研究热点。从解耦表征学习的历史与动机入手,对解耦表征学习的研究现状以及应用进行归纳总结,分析了解耦表征所具有的不变性、复用性等特性,介绍了基于生成解耦表征变差因素的研究、基于流形相互作用解耦表征变差因素的研究、基于对抗性训练解耦表征变差因素的研究,以及一种变分自编码器β-VAE的研究等最新研究动态。同时,阐述了解耦表征学习的典型应用,并对未来的研究方向作出了展望。

关 键 词:解耦学习  表征学习  变分推断  可解释性  机器学习  自编码器  变差因素  复用性  
收稿时间:2021-05-12
修稿时间:2021-06-21

Research advances in disentangled representation learning
CHENG Keyang,MENG Chunyun,WANG Wenshan,SHI Wenxi,ZHAN Yongzhao. Research advances in disentangled representation learning[J]. Journal of Computer Applications, 2021, 41(12): 3409-3418. DOI: 10.11772/j.issn.1001-9081.2021060895
Authors:CHENG Keyang  MENG Chunyun  WANG Wenshan  SHI Wenxi  ZHAN Yongzhao
Affiliation:School of Computer Science and Communication Engineering,Jiangsu University,Zhenjiang Jiangsu 212013,China
National Engineering Laboratory of Big Data Application for Social Security Risk Perception and Prevention by Big Data (China Academy of Electronic and Information Technology),Beijing 100041,China
Xinjiang Lianhai Chuangzhi Information Technology Company Limited,Urumqi Xinjiang 830011,China
Abstract:The purpose of disentangled representation learning is to model the key factors that affect the form of data, so that the change of a key factor only causes the change of data on a certain feature, while the other features are not affected. It is conducive to face the challenge of machine learning in model interpretability, object generation and operation, zero-shot learning and other issues. Therefore, disentangled representation learning always be a research hotspot in the field of machine learning. Starting from the history and motives of disentangled representation learning, the research status and applications of disentangled representation learning were summarized, the invariance, reusability and other characteristics of disentangled representation learning were analyzed, and the research on the factors of variation via generative entangling, the research on the factors of variation with manifold interaction, and the research on the factors of variation using adversarial training were introduced, as well as the latest research trends such as a Variational Auto-Encoder (VAE) named β-VAE were introduced. At the same time, the typical applications of disentangled representation learning were shown, and the future research directions were prospected.
Keywords:disentangled learning  representation learning  variational inference  interpretability  machine learning  auto-encoder  factors of variation  reusability  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号