首页 | 本学科首页   官方微博 | 高级检索  
     

基于双向GCN和CVm的实体对齐模型研究
引用本文:魏忠诚,张洁滢,连彬,张海燕. 基于双向GCN和CVm的实体对齐模型研究[J]. 计算机应用研究, 2021, 38(9): 2716-2720. DOI: 10.19734/j.issn.1001-3695.2020.12.0551
作者姓名:魏忠诚  张洁滢  连彬  张海燕
作者单位:河北工程大学 信息与电气工程学院,河北 邯郸056038;河北省安防信息感知与处理重点实验室,河北 邯郸056038;河北工程大学 水利水电学院,河北 邯郸056038;河北省安防信息感知与处理重点实验室,河北 邯郸056038
基金项目:国家重点研发计划项目(2018YFF0301004);河北省自然科学基金资助项目(F2018402251);河北省高等学校科学技术研究项目(QN2020193);石家庄市重点研发计划项目(201790571A)
摘    要:实体对齐旨在发现并链接不同知识图谱中指向现实世界的相同实体对象.针对基于图卷积网络的实体对齐通常作用于单一关系类型的无向图,容易导致对应实体学习的嵌入结果不一致问题,构建了一种基于双向图卷积网络和变异系数法的实体对齐模型.该模型通过拆分非对称邻接权重矩阵构建双向图卷积网络方法,学习实体前后向隐藏特征,实现实体的完整表示;同时通过变异系数法为属性加权,选择最有代表性的实体局部语义信息,有效提高实体对齐精确度.通过在两组大型真实异构数据集上对模型进行验证,实验结果表明,该方法与现有基于嵌入的实体对齐方法相比Hit@1值平均提高了4%,同时保持较高的平均倒数秩,在一定程度上可以提高实体对齐效果.

关 键 词:知识图谱  实体对齐  表示学习  图卷积神经网络  语义相似
收稿时间:2020-12-28
修稿时间:2021-08-11

Entity alignment model based on two-way gcn and cvm
Wei Zhongcheng,Zhang Jieying,Lian Bin and Zhang Haiyan. Entity alignment model based on two-way gcn and cvm[J]. Application Research of Computers, 2021, 38(9): 2716-2720. DOI: 10.19734/j.issn.1001-3695.2020.12.0551
Authors:Wei Zhongcheng  Zhang Jieying  Lian Bin  Zhang Haiyan
Affiliation:School of information and Electrical Engineering, Hebei University of Engineering,,,
Abstract:Entity alignment aims to discover and link the same entity objects that point to the real word in different knowledge graphs. Entity alignment based on GCN usually acts on undirected graphs of the single relation type, which is easy to result in the problem of inconsistent embedding corresponding results to entity leaning. Therefore, this paper proposed an entity alignment model based on two-way GCN and CVm. It realized by the complete representation of the entity splitting the asymmetric adjacency weight matrix to construct a two-way GCN, so that the model could be learned the forward and backward hidden features of the entity. At the same time, for selecting the most representative entity local semantic information, it used the CVm to weight attributes, which effectively improved the accuracy of entity alignment. By verifying the model on two large real heterogeneous datasets, the Hit@1 value of this method was 4% higher than the existing embedding-based entity alignment method on average and maintains a high average reciprocal rank. It is proved that this method improves the entity alignment effect to a certain extent.
Keywords:knowledge graph   entity alignment   representation learning   GCN   semantic similarity
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号