首页 | 本学科首页   官方微博 | 高级检索  
     

深度学习在手机数据接口缺陷检测中的应用
引用本文:刘亚东,罗印升,曹阳阳,宋伟. 深度学习在手机数据接口缺陷检测中的应用[J]. 计算机与现代化, 2021, 0(6): 35-40. DOI: 10.3969/j.issn.1006-2475.2021.06.007
作者姓名:刘亚东  罗印升  曹阳阳  宋伟
作者单位:江苏理工学院电气信息工程学院,江苏 常州 213001
基金项目:江苏省研究生实践创新计划项目(SJCX19_0691)
摘    要:为了能更好地对手机数据接口的缺陷进行检测,提出一种基于Faster R-CNN的检测算法.将Faster R-CNN检测架构中的RoIPooling替换成RoIAlign,解决RoIPooling计算过程中2次量化造成的目标回归位置的偏差.使用ResNet50融合FPN的网络作为特征提取网络,提高模型对小型目标缺陷的检...

关 键 词:深度学习  残差网络  特征提取  手机数据接口缺陷检测  特征金字塔网络
收稿时间:2021-07-05

Application of Deep Learning in Defect Detection of Mobile Phone Data Interface
LIU Ya-dong,LUO Yin-sheng,CAO Yang-yang,SONG Wei. Application of Deep Learning in Defect Detection of Mobile Phone Data Interface[J]. Computer and Modernization, 2021, 0(6): 35-40. DOI: 10.3969/j.issn.1006-2475.2021.06.007
Authors:LIU Ya-dong  LUO Yin-sheng  CAO Yang-yang  SONG Wei
Abstract:In order to better detect the defects of the mobile phone data interface, this paper proposes a detection algorithm based on Faster R-CNN. The specific research method is to replace RoIPooling in the Faster R-CNN detection architecture with RoIAlign to solve the deviation of the target return position caused by the two quantifications in the RoIPooling calculation process. The ResNet50 fusion FPN network is used as a feature extraction network to improve the model’s detection effect on small target defects. Finally, the test set is used for prediction. Experiments show that the mean average accuracy (mAP) of the proposed algorithm in this paper has reached 91.17%, which is 24.72 percent points higher than mAP when VGG is used as the feature extraction network, and is 2.58 percent points higher than mAP when ResNet50 is used alone as the feature extraction network. Therefore, the algorithm proposed in this paper has a significant effect on mobile phone data interface defect detection, and provides a more effective detection method for mobile phone data interface defect detection.
Keywords:deep learning   residual networks   feature extraction   mobile phone data interface defect detection   feature pyramid networks  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机与现代化》浏览原始摘要信息
点击此处可从《计算机与现代化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号