首页 | 本学科首页   官方微博 | 高级检索  
     

基于共同邻居邻域拓扑稠密性加权的链路预测方法
引用本文:李星,朱宇航,柏溢,李劲松. 基于共同邻居邻域拓扑稠密性加权的链路预测方法[J]. 计算机应用研究, 2021, 38(5): 1503-1507. DOI: 10.19734/j.issn.1001-3695.2020.06.0190
作者姓名:李星  朱宇航  柏溢  李劲松
作者单位:中国人民解放军战略支援部队信息工程大学,郑州450002
基金项目:国家自然科学基金资助项目。
摘    要:链路预测旨在利用已知的网络节点和拓扑结构信息,预测网络中未连接的两个节点之间存在连边的可能性。基于网络拓扑相似性的链路预测方法计算复杂度低且预测效果好,但现有的相似性指标对共同邻居的邻域拓扑信息考虑较少。针对此问题,提出一种基于共同邻居邻域拓扑稠密性加权的链路预测方法。首先,基于邻域拓扑相对稠密指数量化节点的邻域拓扑结构;然后,利用共同邻居的节点度和邻域拓扑相对稠密指数刻画共同邻居及其邻域拓扑的相似性贡献;最后,提出基于共同邻居邻域拓扑稠密性加权的节点相似性指标。在多个实际网络数据上的实验结果表明,与现有相似性指标相比,该方法能够取得更高的预测精度。

关 键 词:复杂网络  链路预测  邻域拓扑稠密性  拓扑加权
收稿时间:2020-06-15
修稿时间:2021-04-09

Link prediction method based on topological density weighting of common neighbor neighborhood
Li Xing,Zhu Yuhang,Bai Yi and Li Jinsong. Link prediction method based on topological density weighting of common neighbor neighborhood[J]. Application Research of Computers, 2021, 38(5): 1503-1507. DOI: 10.19734/j.issn.1001-3695.2020.06.0190
Authors:Li Xing  Zhu Yuhang  Bai Yi  Li Jinsong
Affiliation:(PLA Strategic Support Force Information Engineering University,Zhengzhou 450002,China)
Abstract:Link prediction aims to use known network nodes and topology information to predict the possibility of edges between two unconnected nodes in the network.The link prediction method based on network topological similarity has low computational complexity and good prediction effect,but the existing similarity indices take less consideration of the neighborhood topological information of common neighbors.To solve this problem,this paper proposed a link prediction method based on the weighted neighborhood topological denseness of the common neighbor.Firstly,the method quantified the neighborhood topology of nodes based on the relative density index of neighborhood topology.Then,it used the node degree of the common neighbor and the relative density index of the neighborhood topology to describe the similarity contributions of the common neighbor and its surrounding topology.Finally,it proposed a node similarity index based on the weighting of the topological denseness of common neighbors.The experimental results on multiple actual networks show that the proposed method can achieve higher prediction accuracy compared with existing similarity indices.
Keywords:complex network  link prediction  neighborhood topological denseness  topological weighting
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号