首页 | 本学科首页   官方微博 | 高级检索  
     

基于城市交通监控大数据的工作位置推理方法
引用本文:陈凯,于彦伟,赵金东,宋鹏. 基于城市交通监控大数据的工作位置推理方法[J]. 计算机应用, 2021, 41(1): 177-184. DOI: 10.11772/j.issn.1001-9081.2020060937
作者姓名:陈凯  于彦伟  赵金东  宋鹏
作者单位:1. 烟台大学 计算机与控制工程学院, 山东 烟台 264005;2. 中国海洋大学 计算机科学与技术系, 山东 青岛 266100
基金项目:国家自然科学基金资助项目
摘    要:基于时空数据的用户位置推理在产品推荐、精确营销、交通调度及城市规划等实际应用中有着重要的作用,然而,基于城市交通监控数据的位置推理问题尚未被探索,因此,提出了一种面向稀疏摄像头交通监控数据的工作位置推理方法。首先,收集了路网、兴趣点(POI)等城市交通外围数据,并通过路网匹配的预处理方式获取到了一个含有摄像头、POI等丰富语义信息的真实路网;其次,通过聚类车辆轨迹中所提取的起点-终点(O-D)对来获得车辆重要的停留区域,即候选工作区域;之后,利用所提的in/out访问时间模式的约束,从多个候选区域中匹配出最大可能的工作区域;最后,利用所获取的路网信息和路网周中POI的分布信息提取出车辆的可达POI集合,从而进一步缩小车主的工作位置范围。在一个省会城市真实的交通监控数据集上的综合实验评估和案例分析验证了所提方法的有效性。

关 键 词:数据挖掘  城市计算  交通监控数据  工作位置推理  兴趣点  
收稿时间:2020-07-02
修稿时间:2020-08-31

Work location inference method with big data of urban traffic surveillance
CHEN Kai,YU Yanwei,ZHAO Jindong,SONG Peng. Work location inference method with big data of urban traffic surveillance[J]. Journal of Computer Applications, 2021, 41(1): 177-184. DOI: 10.11772/j.issn.1001-9081.2020060937
Authors:CHEN Kai  YU Yanwei  ZHAO Jindong  SONG Peng
Affiliation:1. School of Computer and Control Engineering, Yantai University, Yantai Shandong 264005, China;2. Department of Computer Science and Technology, Ocean University of China, Qingdao Shandong 266100, China
Abstract:Inferring work locations for users based on spatiotemporal data is important for real-world applications ranging from product recommendation,precise marketing,transportation scheduling to city planning.However,the problem of location inference based on urban surveillance data has not been explored.Therefore,a work location inference method was proposed for vehicle owners based on the data of traffic surveillance with sparse cameras.First,the urban traffic periphery data such as road networks and Point Of Interests(POIs) were collected,and the preprocessing method of road network matching was used to obtain a real road network with rich semantic information such as POIs and cameras.Second,the important parking areas,which mean the candidate work areas for the vehicles were obtained by clustering OriginDestination(O-D) pairs extracted from vehicle trajectories.Third,using the constraint of the proposed in/out visiting time pattern,the most likely work area was selected from multiple area candidates.Finally,by using the obtained road network and the distribution of POIs in the road network,the vehicle’s reachable POIs were extracted to further narrow the range of work location.The effectiveness of the proposed method was demonstrated by comprehensive experimental evaluations and case studies on a real-world traffic surveillance dataset of a provincial capital city.
Keywords:data mining  urban computing  traffic surveillance data  work location inference  Point Of Interest(POI)
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号