首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度残差长短记忆网络交通流量预测算法
引用本文:刘世泽,秦艳君,王晨星,苏琳,柯其学,罗海勇,孙艺,王宝会. 基于深度残差长短记忆网络交通流量预测算法[J]. 计算机应用, 2021, 41(6): 1566-1572. DOI: 10.11772/j.issn.1001-9081.2020121928
作者姓名:刘世泽  秦艳君  王晨星  苏琳  柯其学  罗海勇  孙艺  王宝会
作者单位:1. 北京航空航天大学 软件学院, 北京 100191;2. 北京邮电大学 计算机学院, 北京 100876;3. 首都师范大学 信息工程学院, 北京 100048;4. 中国科学院 计算技术研究所, 北京 100190
基金项目:国家自然基金资助项目(61872046);北京邮电大学提升科技创新能力行动计划项目(2019XD-A06)。
摘    要:针对多步交通流量预测任务中时间空间特征提取效果不佳和预测未来时间交通流量精度低的问题,提出一种基于长短时记忆(LSTM)网络、卷积残差网络和注意力机制的融合模型.首先,利用一种基于编解码器的架构,通过在编解码器中加入LSTM网络来挖掘不同尺度的时间域特征;其次,构建基于注意力机制挤压激励(SE)模块的卷积残差网络嵌入到...

关 键 词:时空数据挖掘  编解码器  长短期记忆  挤压-激励模块  空间注意力
收稿时间:2020-11-04
修稿时间:2021-04-02

Traffic flow prediction algorithm based on deep residual long short-term memory network
LIU Shize,QIN Yanjun,WANG Chenxing,SU Lin,KE Qixue,LUO Haiyong,SUN Yi,WANG Baohui. Traffic flow prediction algorithm based on deep residual long short-term memory network[J]. Journal of Computer Applications, 2021, 41(6): 1566-1572. DOI: 10.11772/j.issn.1001-9081.2020121928
Authors:LIU Shize  QIN Yanjun  WANG Chenxing  SU Lin  KE Qixue  LUO Haiyong  SUN Yi  WANG Baohui
Affiliation:1. College of Software, Beihang University, Beijing 100191, China;2. School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;3. College of Information Engineering, Capital Normal University, Beijing 100048, China;4. Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
Abstract:In the multi-step traffic flow prediction task, the spatial-temporal feature extraction effect is not good and the prediction accuracy of future traffic flow is low. In order to solve these problems, a fusion model combining Long-Short Term Memory (LSTM) network, convolutional residual network and attention mechanism was proposed. Firstly, an encoder-decoder-based architecture was used to mine the temporal domain features of different scales by adding LSTM network into the encoder-decoder. Secondly, a convolutional residual network based on the Squeeze-and-Excitation (SE) block of attention mechanism was constructed and embedded into the LSTM network structure to mine the spatial domain features of traffic flow data. Finally, the implicit state information obtained from the encoder was input into the decoder to realize the prediction of high-precision multi-step traffic flow. The real traffic data was used for the experimental testing and analysis. The results show that, compared with the original graph convolution-based model, the proposed model achieves the decrease of 1.622 and 0.08 on the Root Mean Square Error (RMSE) for Beijing and New York traffic flow public datasets, respectively. The proposed model can predict the traffic flow efficiently and accurately.
Keywords:spatial-temporal data mining  encoder-decoder  Long Short-Term Memory (LSTM)  Squeeze-and-Excitation (SE) block  spatial attention  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号