首页 | 本学科首页   官方微博 | 高级检索  
     

边缘计算支持下的移动群智感知本地差分隐私保护机制
引用本文:李卓,宋子晖,沈鑫,陈昕. 边缘计算支持下的移动群智感知本地差分隐私保护机制[J]. 计算机应用, 2021, 41(9): 2678-2686. DOI: 10.11772/j.issn.1001-9081.2020111787
作者姓名:李卓  宋子晖  沈鑫  陈昕
作者单位:1. 网络文化与数字传播北京市重点实验室(北京信息科技大学), 北京 100101;2. 北京信息科技大学 计算机学院, 北京 100101
基金项目:国家自然科学基金资助项目(61872044);北京市青年拔尖人才项目;北京市青年拔尖人才培育计划项目(CIT&TCD201804055);网络文化与数字传播北京市重点实验室开放课题。
摘    要:针对移动群智感知(MCS)中在用户数据提交阶段的隐私保护困难和因隐私保护造成成本增加的问题,基于本地差分隐私(LDP)保护原理设计出用户提交数据属性联合隐私保护的CS-MVP算法和用户提交数据属性独立隐私保护的CS-MAP算法.首先,基于属性关系构建用户提交数据的隐私性模型和任务数据的可用性模型,利用CS-MVP和CS...

关 键 词:移动群智感知  本地差分隐私  边缘计算  数据可用性  隐私保护
收稿时间:2020-11-16
修稿时间:2021-01-18

Local differential privacy protection mechanism for mobile crowd sensing with edge computing
LI Zhuo,SONG Zihui,SHEN Xin,CHEN Xin. Local differential privacy protection mechanism for mobile crowd sensing with edge computing[J]. Journal of Computer Applications, 2021, 41(9): 2678-2686. DOI: 10.11772/j.issn.1001-9081.2020111787
Authors:LI Zhuo  SONG Zihui  SHEN Xin  CHEN Xin
Affiliation:1. Beijing Key Laboratory of Internet Culture and Digital Dissemination Research(Beijing Information Science and Technology University), Beijing 100101 China;2. Computer School, Beijing Information Science and Technology University, Beijing 100101 China
Abstract:Aiming at the problem of the difficulty in privacy protection and the cost increase caused by privacy protection in the user data submission stage in Mobile Crowd Sensing (MCS), CS-MVP algorithm for joint privacy protection and CS-MAP algorithm for independent privacy protection of the attributes of user submitted data were designed based on the principle of Local Differential Privacy (LDP). Firstly, the user submitted privacy model and the task data availability model were constructed on the basis of the attribute relationships. And CS-MVP algorithm and CS-MAP algorithm were used to solve the availability maximization problem under the privacy constraint. At the same time, in the edge computing supported MCS scenarios, the three-layer architecture for MCS under privacy protection of the user submitted data was constructed. Theoretical analysis proves the optimality of the two algorithms under the data attribute joint privacy constraint and data attribute independent privacy constraint respectively. Experimental results show that under the same privacy budget and amount of data, compared with LoPub and PrivKV, the accuracy of user submitted data recovered to correct sensor data based on CS-MVP algorithm and CS-MAP algorithm is improved by 26.94%, 84.34% and 66.24%, 144.14% respectively.
Keywords:Mobile Crowd Sensing (MCS)  Local Differential Privacy (LDP)  edge computing  data availability  privacy protection  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号