首页 | 本学科首页   官方微博 | 高级检索  
     

基于特征加权聚合的图像检索目标对抗攻击方法
引用本文:杨帆,李阳,苗壮,张睿,王家宝,李航. 基于特征加权聚合的图像检索目标对抗攻击方法[J]. 计算机应用研究, 2021, 38(12): 3760-3764. DOI: 10.19734/j.issn.1001-3695.2021.03.0113
作者姓名:杨帆  李阳  苗壮  张睿  王家宝  李航
作者单位:陆军工程大学 指挥控制工程学院,南京210007
基金项目:国家自然科学基金资助项目;国家重点研发计划课题;江苏省自然科学基金资助项目;中国博士后科学基金资助项目
摘    要:基于深度学习的图像检索技术使得图像隐私泄露成为一个亟待解决的问题.利用对抗攻击生成的对抗样本,可在一定程度上实现隐私保护.但现有针对图像检索系统的目标对抗攻击方法易受选取目标样本质量和数量的影响,导致其攻击效果不佳.针对该问题,提出了一种基于特征加权聚合的图像检索目标对抗攻击方法,该方法将目标图像的检索准确率作为衡量样本质量的权重,利用目标类中少量样本的特征进行加权聚合获取类特征作为最终攻击目标.在RParis和ROxford两个数据集上的实验结果表明,该方法生成的对抗样本相比TMA方法,检索精度平均提升38%,相比DHTA方法,检索精度平均提升7.5%.

关 键 词:对抗攻击  图像检索  深度学习
收稿时间:2021-03-30
修稿时间:2021-11-18

Targeted adversarial attack method for image retrieval based on feature weighted aggregation
Yang Fan,Li Yang,Miao Zhuang,Zhang Rui,Wang Jiabao and Li Hang. Targeted adversarial attack method for image retrieval based on feature weighted aggregation[J]. Application Research of Computers, 2021, 38(12): 3760-3764. DOI: 10.19734/j.issn.1001-3695.2021.03.0113
Authors:Yang Fan  Li Yang  Miao Zhuang  Zhang Rui  Wang Jiabao  Li Hang
Affiliation:Army Engineering University of PLA,,,,,
Abstract:Image privacy leakage is an urgent problem to be solved in deep learning-based image retrieval systems. Using adversarial samples generated by the adversarial attack technology can achieve privacy protection to some extent. However, the existing targeted attack methods for image retrieval systems are susceptible to the quality and quantity of selected target samples, which can lead to poor attack effects. To solve this problem, this paper proposed a targeted adversarial attack method for image retrieval based on feature weighted aggregation. This method used the retrieval accuracy of the target image as weights to obtain the class features, which was generated by a small number of samples from the target class. Experimental results on two image retrieval datasets of RParis and ROxford show that the retrieval accuracy of the adversarial samples generated by this method improved by 38% on average compared with TMA method, and improved by 7.5% on average compared with DHTA method.
Keywords:adversarial attack   image retrieval   deep learning
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号