首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应动量优化算法的正则化极限学习机
引用本文:王粲,夏元清,邹伟东. 基于自适应动量优化算法的正则化极限学习机[J]. 计算机应用研究, 2021, 38(6): 1724-1727,1764. DOI: 10.19734/j.issn.1001-3695.2020.08.0186
作者姓名:王粲  夏元清  邹伟东
作者单位:北京理工大学 自动化学院,北京 100081
基金项目:国家重点研发计划资助项目(2018YFB1700400);国家自然科学基金资助项目(61906015,61836001)
摘    要:针对极限学习机(extreme learning machine,ELM)隐节点不确定性导致的系统不稳定,以及对大型数据计算负担过重的问题,提出了基于自适应动量优化算法(adaptive and momentum method,AdaMom)的正则化极限学习机.算法主要思想是构造连续可微的目标函数,在梯度下降过程中计算自适应学习率,求自适应学习率与梯度乘积的指数加权平均值,通过迭代得到损失函数最小值对应的隐层输出权重矩阵.实验结果表明,在相同基准数据集的训练中,AdaMom-ELM算法具有非常良好的泛化性能和鲁棒性,提高了计算效率.

关 键 词:机器学习  极限学习机  梯度下降  模型优化  数据分类  泛化性能  鲁棒性
收稿时间:2020-08-04
修稿时间:2021-05-10

Adaptive and momentum method for regularized extreme learning machine
Wang Can,Xia Yuanqing and Zou Weidong. Adaptive and momentum method for regularized extreme learning machine[J]. Application Research of Computers, 2021, 38(6): 1724-1727,1764. DOI: 10.19734/j.issn.1001-3695.2020.08.0186
Authors:Wang Can  Xia Yuanqing  Zou Weidong
Affiliation:School of Automation,Beijing Institute of Technology,,
Abstract:Aiming at the system instability caused by the uncertainty of the extreme learning machine(ELM) hidden nodes and the problem of overburdening large data calculations, this paper proposed an optimization algorithm based on the adaptive and momentum method(AdaMom). This algorithm constructed a continuously differentiable objective function, and calculated the adaptive learning rate during the gradient descent process, obtained the exponentially weighted average of the product of the adaptive learning rate and the gradient. At last it obtained the hidden layer output weight matrix corresponding to the minimum value of the loss function through iteration. The experimental results show that in the training of the same benchmark data set, the AdaMom-ELM algorithm has very good generalization performance and robustness, which improves the computational efficiency.
Keywords:machine learning   extreme learning machine   gradient descent   model optimization   data classification   generalization performance   robustness
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号