首页 | 本学科首页   官方微博 | 高级检索  
     

基于局部类内结构的鉴别性字典学习方法
引用本文:陈子鎏,胡高鹏,王晓明,黄增喜,杜亚军. 基于局部类内结构的鉴别性字典学习方法[J]. 计算机应用研究, 2021, 38(2): 489-494,500. DOI: 10.19734/j.issn.1001-3695.2019.11.0607
作者姓名:陈子鎏  胡高鹏  王晓明  黄增喜  杜亚军
作者单位:西华大学 计算机与软件工程学院,成都610039;西华大学 计算机与软件工程学院,成都610039;西华大学 机器人研究中心,成都610039
基金项目:西华大学研究生创新基金资助项目;国家自然科学基金资助项目
摘    要:针对支持向量引导的字典学习(support vector guided dictionary learning,SVGDL)的鉴别约束项只体现了大间隔原理,而没有很好地利用数据空间内在结构信息的问题,提出了一种新颖的鉴别性字典学习方法——基于局部类内结构的鉴别性字典学习方法。该方法结合了大间隔原理和局部Fisher线性鉴别分析作为鉴别约束条件来指导指点学习。通过建立一个局部类内散度矩阵来编码数据空间的分布结构,增强了挖掘同类数据空间局部结构的能力并进一步地表示了编码向量在数据空间中的局部相似性。为了评价提出方法在图像识别上的表现,在几个常见图像数据集上进行了实验。结果表明,提出方法与大间隔方法相比,在平均识别率上有着明显的提高。

关 键 词:字典学习  协作表示  支持向量机  局部Fisher鉴别分析  图像识别
收稿时间:2019-11-10
修稿时间:2021-01-12

Discriminative dictionary learning based on locality intra-class structure
Chen Ziliu,Hu Gaopeng,Wang Xiaoming,Huang Zengxi and Du Yajun. Discriminative dictionary learning based on locality intra-class structure[J]. Application Research of Computers, 2021, 38(2): 489-494,500. DOI: 10.19734/j.issn.1001-3695.2019.11.0607
Authors:Chen Ziliu  Hu Gaopeng  Wang Xiaoming  Huang Zengxi  Du Yajun
Affiliation:(School of Computer&Software Engineer,Xihua University,Chengdu 610039,China;Robotics Research Center,Xihua University,Chengdu 610039,China)
Abstract:Aiming at the limitation that the discriminative term of only embodies the max-margin principle as SVM,and fails to utilize the intrinsic structure information of data space,this paper proposed a novel discriminative dictionary learning method called discriminative dictionary learning based on locality intra-class structure(LCSDDL).The proposed method combined max-margin principle with local Fisher discriminant analysis(LFDA)as the discriminative term to guide dictionary learning.This method constructed a local within-class scatter matrix to encode the local structure of data space,which enhanced the ability of exploiting the local structure of same class data space and further reflected the local similarity of coding vectors in data space.In order to evaluate the performance of the proposed method for image recognition,the experiment carried on several common datasets.From the experimental result,the proposed method has an obvious improvement over the other competing methods.
Keywords:dictionary learning  collaborative representation  support vector machine(SVM)  local Fisher discriminant analysis(LFDA)  image recognition
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号