首页 | 本学科首页   官方微博 | 高级检索  
     

基于CNN和SVM的人脸识别系统的设计与实现
引用本文:冯友兵,陆轶秋,仲伟波. 基于CNN和SVM的人脸识别系统的设计与实现[J]. 计算机与数字工程, 2021, 49(2): 378-382,420. DOI: 10.3969/j.issn.1672-9722.2021.02.028
作者姓名:冯友兵  陆轶秋  仲伟波
作者单位:江苏科技大学电子信息学院 镇江 212003;江苏科技大学电子信息学院 镇江 212003;江苏科技大学电子信息学院 镇江 212003
基金项目:江苏省重点研发计划产业前瞻与共性关键技术
摘    要:针对人脸识别在实际应用中存在姿态变化、表情、遮挡等问题,研究了结合支持向量机(SVM)分类的卷积神经网络(CNN)人脸识别算法,设计并实现了人脸识别系统.系统首先使用CNN提取人脸特征向量,再将特征向量通过SVM进行分类.测试结果表明,系统在训练样本充分时面对人脸姿态变化、表情、遮挡等情况下都具有较好的性能,识别率在9...

关 键 词:人脸识别  卷积神经网络  支持向量机  深度学习

Design and Implementation of Face Recognition System Based on CNN and SVM
FENG Youbing,LU Yiqiu,ZHONG Weibo. Design and Implementation of Face Recognition System Based on CNN and SVM[J]. Computer and Digital Engineering, 2021, 49(2): 378-382,420. DOI: 10.3969/j.issn.1672-9722.2021.02.028
Authors:FENG Youbing  LU Yiqiu  ZHONG Weibo
Affiliation:(School of Electronics and Information Engineering,Jiangsu University of Science and Technology,Zhenjiang 212003)
Abstract:In order to solve the problems of attitude change,pose change,obsured in actual application of huaman face recogni?tion system,the face recognition algorithm based on convolutional neural network combined with support vector machine is studied,the face recognition system is designed and implemented.Firstly,the facial feature vectors are extracted by CNN,and then the fea?ture vectors are classified by SVM.The test results show that the system has good performance in attitude change,pose change,ob?sured and so on when the training samples is sufficient.The recognition rate is more than 95%,and it can meet the demand of normal use of face recognition.
Keywords:face recognition  convolutional neural network  support vector machine  deep learing
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号