首页 | 本学科首页   官方微博 | 高级检索  
     

基于离散小波变换和随机森林的轴承故障诊断研究
引用本文:彭成,王松松,贺婧,李凤娟. 基于离散小波变换和随机森林的轴承故障诊断研究[J]. 计算机应用研究, 2021, 38(1): 101-105. DOI: 10.19734/j.issn.1001-3695.2019.09.0633
作者姓名:彭成  王松松  贺婧  李凤娟
作者单位:湖南工业大学计算机学院,湖南株洲412007;中南大学自动化学院,长沙410083;湖南工业大学计算机学院,湖南株洲412007
基金项目:国家自然科学基金资助项目;湖南省自然科学基金资助项目;湖南省研究生创新计划资助项目
摘    要:针对不同工况下数据特征选择困难和单一分类器在滚动轴承故障诊断中识别率较低等问题,提出了一种基于离散小波变换和随机森林相结合的滚动轴承故障诊断方法。该方法首先利用离散小波变换分解振动信号,得到n层近似系数;然后创新性地采用sigmoid熵构造出n维特征向量,sigmoid熵能较好地提取非平稳信号的特征,提高诊断准确率;最后采用随机森林对滚动轴承不同故障信号进行分类。实验采用西储凯斯大学轴承数据中心网站提供的轴承数据,与传统分类器(KNN和SVM)以及单个分类回归树CART进行对比分析,结果表明该方法具有更好的诊断效果。

关 键 词:滚动轴承  故障诊断  离散小波变换  随机森林  sigmoid 熵
收稿时间:2019-09-27
修稿时间:2020-12-11

Research on bearing fault diagnosis based on discrete wavelet transform and random forest
Peng Cheng,Wang Songsong,He Jing and Li Fengjuan. Research on bearing fault diagnosis based on discrete wavelet transform and random forest[J]. Application Research of Computers, 2021, 38(1): 101-105. DOI: 10.19734/j.issn.1001-3695.2019.09.0633
Authors:Peng Cheng  Wang Songsong  He Jing  Li Fengjuan
Affiliation:(School of Computer Science,Hunan University of Technology,Zhuzhou Hunan 412007,China;School of Automation,Central South University,Changsha 410083,China)
Abstract:Aiming at the difficulty of data feature selection under different working conditions and the low recognition rate of single classifier in rolling bearing fault diagnosis,this paper proposed a rolling bearing fault diagnosis algorithm based on discrete wavelet transform and random forest.Firstly the proposed method decomposed the vibration signal by discrete wavelet transform to get n-layer approximate coefficients.Then,it used the sigmoid entropy to construct n-dimensional eigenvectors innovatively.The sigmoid entropy could extract the features of non-stationary signals better and improve the diagnostic accuracy.Finally this paper used random forest to diagnose different fault signals of rolling bearing.It used the bearing data provided by the bearing data center website of Case Western Reserve University for experiments.Comparing with the results of traditional classifier(KNN and SVM)and single classification regression tree CART,this method has better diagnostic results.
Keywords:rolling bearing  fault diagnosis  discrete wavelet transform  random forest  sigmoid entropy
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用研究》浏览原始摘要信息
点击此处可从《计算机应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号