首页 | 本学科首页   官方微博 | 高级检索  
     

基于人体骨架特征编码的健身动作识别方法
引用本文:郭天晓,胡庆锐,李建伟,沈燕飞. 基于人体骨架特征编码的健身动作识别方法[J]. 计算机应用, 2021, 41(5): 1458-1464. DOI: 10.11772/j.issn.1001-9081.2020071113
作者姓名:郭天晓  胡庆锐  李建伟  沈燕飞
作者单位:1. 北京体育大学 运动人体科学学院, 北京 100084;2. 北京体育大学 体育工程学院, 北京 100084
基金项目:国家重点研发计划项目(2018YFC2000600);中央高校基本科研业务费专项资金资助项目(校2020056,校2020010)。
摘    要:健身动作识别是智能健身系统的核心环节.为了提高健身动作识别算法的精度和速度,并减少健身动作中人体整体位移对识别结果的影响,提出了一种基于人体骨架特征编码的健身动作识别方法.该方法包括三个步骤:首先,构建精简的人体骨架模型,并利用人体姿态估计技术提取骨架模型中各关节点的坐标信息;其次,利用人体中心投影法提取动作特征区域以...

关 键 词:计算机视觉  动作识别  智能健身  骨架信息  姿态估计
收稿时间:2020-07-30
修稿时间:2020-09-25

Fitness action recognition method based on human skeleton feature encoding
GUO Tianxiao,HU Qingrui,LI Jianwei,SHEN Yanfei. Fitness action recognition method based on human skeleton feature encoding[J]. Journal of Computer Applications, 2021, 41(5): 1458-1464. DOI: 10.11772/j.issn.1001-9081.2020071113
Authors:GUO Tianxiao  HU Qingrui  LI Jianwei  SHEN Yanfei
Affiliation:1. School of Sport Science, Beijing Sport University, Beijing 100084, China;2. School of Sports Engineering, Beijing Sport University, Beijing 100084, China
Abstract:Fitness action recognition is the core of the intelligent fitness system. In order to improve the accuracy and speed of fitness action recognition algorithm, and reduce the influence of the global displacement of fitness actions on the recognition results, a fitness action recognition method based on human skeleton feature encoding was proposed which included three steps:firstly, the simplified human skeleton model was constructed, and the information of skeleton model's joint point coordinates was extracted through the human pose estimation technology; secondly, the action feature region was extracted by using the human central projection method in order to eliminate the influence of the global displacement on action recognition; finally, the feature region was encoded as the feature vector and input to a multi-classifier to realize the action recognition, at the same time the length of the feature vector was optimized for improving the recognition rate and speed. Experiment results showed that the proposed method achieved the recognition rate of 97.24% on the self-built fitness dataset with 28 types of fitness actions, which verified the effectiveness of this method to recognize different types of fitness actions; on the public KTH and Weizmann datasets, the recognition rates of the proposed method were 91.67% and 90% respectively, higher than those of other similar methods.
Keywords:computer vision  action recognition  intelligent fitness  skeleton information  pose estimation  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号