首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的贝叶斯概率水文预报模型
引用本文:李向阳,程春田,林剑艺. 基于BP神经网络的贝叶斯概率水文预报模型[J]. 水利学报, 2006, 37(3): 0354-0359
作者姓名:李向阳  程春田  林剑艺
作者单位:大连理工大学,土木水利学院,辽宁,大连,116023
摘    要:本文在贝叶斯概率水文预报系统(BFS)框架之上,研究了双牌水库水文预报的不确定性,建立了流量先验分布及似然函数的BP神经网络模型,并通过Markov链Monte Carlo(MCMC)方法求解得到流量后验分布及其统计参数。通过对双牌水库历史洪水的研究结果表明,基于BP神经网络的BFS不仅显著提高了预报精度,而且为防洪决策提供了更多的信息,使得预报人员在决策中能考虑预报的不确定性,定量的估计各种决策的风险和后果。

关 键 词:概率水文预报  不确定性  BP神经网络
文章编号:0559-9350(2006)03-0354-06
收稿时间:2005-05-13
修稿时间:2005-05-13

Bayesian probabilistic forecasting model based on BP ANN
LI Xiang-yang,CHENG Chun-tian,LIN Jian-yi. Bayesian probabilistic forecasting model based on BP ANN[J]. Journal of Hydraulic Engineering, 2006, 37(3): 0354-0359
Authors:LI Xiang-yang  CHENG Chun-tian  LIN Jian-yi
Affiliation:Dalian University of Technology, Dalian 116023, China
Abstract:Based on the Bayesian Forecasting System(BFS) framework,a new prior density and likelihood function model using BP artificial neural network(ANN) is developed to study the hydrologic uncertainty of the Shuangpai Reservoir,China.The Markov chain Monte Carlo method is applied to solve the posterior distribution and statistics of reservoir stage.The study result of the floods in history shows that Bayesian probabilistic forecasting model based on BP ANN not only remarkably improves the forecasting precision but also offers more information for flood control,which makes it possible for decision makers to consider the uncertainty of hydrologic forecasting during decision-making and estimate the risks of different decisions quantitatively.
Keywords:MCMC
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《水利学报》浏览原始摘要信息
点击此处可从《水利学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号