Origin of Solid-State Activated Sintering in Bi2O3-Doped ZnO |
| |
Authors: | Jian Luo Haifeng Wang Yet-Ming Chiang |
| |
Affiliation: | Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 |
| |
Abstract: | Activated sintering in Bi2O3-doped ZnO has been studied with emphasis on the mechanistic role of intergranular amorphous films. The atomic-level microstructures and bismuth solute distributions in doped powders have been investigated using high-resolution electron microscopy and scanning transmission electron microscopy. Densification is observed to be significant below the bulk eutectic temperature in the presence of Bi2O3 concentrations as low as 0.58 mol%. Transmission electron microscopy of as-calcined and sintered powders shows that significant neck growth and particle coarsening occur in the solid state. Intergranular amorphous films of ∼1 nm thickness, terminating in wetting menisci at sinter-necks, are observed to form concurrently with the onset of activated sintering. In a few instances, amorphous films are also observed at surfaces of the ZnO particles. These films appear to be the free-surface counterpart to equilibrium-thickness intergranular films. Activated sintering in this binary system is attributed to rapid mass transport through subeutectic, equilibrium-thickness intergranular films, with the amorphous phase also providing capillary pressure. |
| |
Keywords: | |
|
|