首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于四元加权消减的复杂网络社团划分算法
引用本文:邢雪,马杰良,安莉莉. 一种基于四元加权消减的复杂网络社团划分算法[J]. 延边大学学报(自然科学版), 2009, 35(1): 68-71
作者姓名:邢雪  马杰良  安莉莉
作者单位:邢雪,安莉莉,XING Xue,AN Li-li(南京信息工程大学,信息与控制学院);马杰良,MA Jie-liang(南京信息工程大学,电子与信息工程学院:江苏,南京,210044)  
摘    要:延续广泛应用的社团结构分级聚类方法,提出了衡量网络社团结构的社团稠密度概念,从而反映了网络结构整体性质的重要特征,并将参数应用于对网络社团聚类的研究当中.特别是基于社团稠密的四元结构提出了基于四元加权消减的社团划分算法.通过复杂网络实例验证了该算法的有效性,并对实验结果进行了比较分析,得出该算法在准确性方面对加权网络有较好效果.

关 键 词:社团结构  加权消减算法  社团稠密度  复杂网络  加权网络

A Tetra-element Weighted and Reduced Algorithm for Detecting Community Structure in Complex Networks
XING Xue,MA Jie-liang,AN Li-li. A Tetra-element Weighted and Reduced Algorithm for Detecting Community Structure in Complex Networks[J]. Journal of Yanbian University (Natural Science), 2009, 35(1): 68-71
Authors:XING Xue  MA Jie-liang  AN Li-li
Affiliation:XING Xue, MA Jie-liang, AN Li-li(1. College of Information and Control, Nanjing University of Information Science and Technology 2. College of Electronic and Information Engineering, Nanj ing University of Information Science and Technology , Nanjing 210044, China )
Abstract:Community structure is a common property that exists in complex networks. Improved divisive method is used in this paper in order to transform the communities detecting into weighted and reduced analysis problem. Then, this paper proposes a new concept of community density which measures community structure, and applies it to community structure demarcation. Especially, a new tetra-element weighted and reduced algorithm closely combined with community density is proposed. We also make the comparison and analysis of the experimental results and obtain a conclusion that the proposed new algorithm presents fitness in veracity for weighted networks.
Keywords:community structure  weighted and reduced algorithm  community density  complex networks  weighted network
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号