Synthesis/design optimization of SOFC-PEM hybrid system under uncertainty |
| |
Authors: | Lingjun Tan Chen Yang Nana Zhou |
| |
Affiliation: | Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, Chongqing University, Chongqing 400030, China |
| |
Abstract: | Solid oxide fuel cell-proton exchange membrane (SOFC-PEM) hybrid system is being foreseen as a valuable alternative for power generation. As this hybrid system is a conceptual design, many uncertainties involving input values should be considered at the early stage of process optimization. We present in this paper a generalized framework of multi-objective optimization under uncertainty for the synthesis/design optimization of the SOFC-PEM hybrid system. The framework is based on geometric, economic and electrochemical models and focuses on evaluating the effect of uncertainty in operating parameters on three conflicting objectives: electricity efficiency, SOFC current density and capital cost of system. Themulti-objective optimization provides solutions in the form of a Pareto surface, with a range of possible synthesis/design solutions and a logical procedure for searching the global optimum solution for decision maker. Comparing the stochastic and deterministic Pareto surfaces of different objectives, we conclude that the objectives are considerably influenced by uncertainties because the two trade-off surfaces are different. |
| |
Keywords: | Solid oxide fuel cel Proton exchange membrane fuel cel Hybrid system Uncertainty Optimization |
本文献已被 万方数据 等数据库收录! |
| 点击此处可从《中国化学工程学报》浏览原始摘要信息 |
|
点击此处可从《中国化学工程学报》下载全文 |
|