首页 | 本学科首页   官方微博 | 高级检索  
     

人工神经网络非线性地震波形反演
引用本文:周辉,何樵登,徐世浙. 人工神经网络非线性地震波形反演[J]. 石油物探, 1997, 36(1): 61-70
作者姓名:周辉  何樵登  徐世浙
作者单位:[1]青岛海洋大学地质地球物理所 [2]长春地质学院地球物理系
基金项目:国际自然科学基金,中国科学院资助,中国石油天然气总公司资助,大庆石油管理局联合资助
摘    要:地震波形反演是非线性问题,其目标函数阳多极值的函数,若用线性化的反演方法求解,常会遇到迭代收敛于目标函数局部最优等困难。本文研究能求得目标函数全局最优解的遗传算法训练人工神经网络的地震波形反演方法。考虑到遗传算法训练神经网络地震波形反演的未知能数量大,而通常的二进制编码遗传算法占用计算机内存量大,不能在较小内存的计算机上实现,故以可节省内存的0-1编码遗传算法训练神经网络,提出了加速网络收敛的方法

关 键 词:神经网络 遗传算法 地震波形反演 地震勘探
收稿时间:1996-03-25
修稿时间:1996-05-28

Nonlinear seismic waveform inversion using the artifiual neural network
Zhou Hui. Nonlinear seismic waveform inversion using the artifiual neural network[J]. Geophysical Prospecting For Petroleum, 1997, 36(1): 61-70
Authors:Zhou Hui
Affiliation:Institute of Geology and Geophysics, Qingdao University of Ocean, Qingdao 266003
Abstract:The seismic waveform inversion is a nonlinear problem. Its objective functions arc functions with several extreme values. When solving the problem using the linear inversion method,the difficulty of thc iteration converging to tho local optimum of the objoctive function is often met. The paper proposes a seismie waveform inversion method using the attifical neural network trained by the genetic algorithm which can get thc overall optimum solution of the objective function. Since the unknown paramcters of the seismie waveform inversion using the neural network trained by the genetic algorithm are many,the usual binary-coded genetic algorithm can not be implemented on the computer with a little memory space, so the 0-1 coded genetic algorithm which can save memory space is used to train the neural network. Also,the method to specd the network convergence is prcsented.
Keywords:Artificial Neural Network   0-1 Code   Genetic Algorithm   Nonlinear   Seismic Waveform Inversion
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《石油物探》浏览原始摘要信息
点击此处可从《石油物探》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号