首页 | 本学科首页   官方微博 | 高级检索  
     

基于差分特征和高斯混合模型的湖南方言识别
引用本文:王岐学,钱盛友,赵新民. 基于差分特征和高斯混合模型的湖南方言识别[J]. 计算机工程与应用, 2009, 45(35): 129-131. DOI: 10.3778/j.issn.1002-8331.2009.35.039
作者姓名:王岐学  钱盛友  赵新民
作者单位:湖南师范大学物理与信息科学学院,长沙,410081;湖南师范大学物理与信息科学学院,长沙,410081;湖南师范大学物理与信息科学学院,长沙,410081
摘    要:语音的韵律是区分汉语方言的重要语音声学特征,而语音的差分特征是语音韵律的重要体现。采用差分特征ΔMFCC和ΔΔMFCC作为特征参数,用高斯混合模型(GMM)作为训练模型,通过计算测试样本的似然概率来识别方言的类型。用该方法对长沙方言、邵阳方言、衡阳方言和普通话进行了识别研究,并与采用MFCC作为特征参数的识别效果进行了比较。实验结果表明差分特征具有识别率高、抗噪声性能更好等优点。

关 键 词:差分特征  高斯混合模型  方言识别
收稿时间:2009-07-28
修稿时间:2009-10-19 

Hunan dialects identification based on GMM and difference speech feature
WANG Qi-xue,QIAN Sheng-you,ZHAO Xin-min. Hunan dialects identification based on GMM and difference speech feature[J]. Computer Engineering and Applications, 2009, 45(35): 129-131. DOI: 10.3778/j.issn.1002-8331.2009.35.039
Authors:WANG Qi-xue  QIAN Sheng-you  ZHAO Xin-min
Affiliation:College of Physics and Information Science,Hunan Normal University,Changsha 410081,China
Abstract:Rhythm of speech is an important acoustic distinction between different Chinese dialects,and the difference feature is an important reflection of rhythm.While difference features ΔMFCC &; ΔΔMFCC are used as characteristic parameters and Gaussian Mixture Model(GMM) is used as a trained model,the dialect can be identified through calculating the likelihood probability of the test samples.Changsha dialect,Shaoyang dialect,Hengyang dialect and Mandarin have been investigated with this method,and its effect has been compared with the effect using MFFC as characteristic parameters.Experiment results show that a more high recognition rate and better anti-noise performance can be obtained by GMM trained with difference feature.
Keywords:differential feature  Gaussian Mixture Model(GMM)  dialects identification
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号