首页 | 本学科首页   官方微博 | 高级检索  
     


Correlated electron-hole transitions in wurtzite GaN quantum dots:the effects of strain and hydrostatic pressure
Authors:Zheng Dongmei  Wang Zongchi  and Xiao Boqi
Affiliation:Department of Physics and Electromechanical Engineering,Sanming College,Sanming 365004,China
Abstract:Within the effective-mass and finite-height potential barrier approximation,a theoretical study of the effects of strain and hydrostatic pressure on the exciton emission wavelength and electron-hole recombination rate in wurtzite cylindrical GaN/AlxGa1-xN quantum dots(QDs) is performed using a variational approach.Numerical results show that the emission wavelength with strain effect is higher than that without strain effect when the QD height is large(> 3.8 nm),but the status is opposite when the QD height is small(< 3.8 nm).The height of GaN QDs must be less than 5.5 nm for an efficient electron-hole recombination process due to the strain effect.The emission wavelength decreases linearly and the electron-hole recombination rate increases almost linearly with applied hydrostatic pressure.The hydrostatic pressure has a remarkable influence on the emission wavelength for large QDs,and has a significant influence on the electron-hole recombination rate for small QDs.Furthermore,the present numerical outcomes are in qualitative agreement with previous experimental findings under zero pressure.
Keywords:GaN quantum dots  excitons  strain  hydrostatic pressure
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号