首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于海量语料的网络热点新词识别方法
引用本文:张海军,李勇,闫琪琪. 一种基于海量语料的网络热点新词识别方法[J]. 计算机工程与应用, 2015, 51(5): 208-213
作者姓名:张海军  李勇  闫琪琪
作者单位:1.新疆师范大学 初等教育学院,乌鲁木齐 8300542.新疆师范大学 计算机科学技术学院,乌鲁木齐 830054
基金项目:国家自然科学基金(No.61163045);新疆维吾尔自治区自然科学基金(No.2012211A057);新疆师范大学重点学科招标课题(No.12XSXZ0601);新疆师范大学研究生创新基金项目(No.20131201)。
摘    要:基于海量语料的热点新词识别是汉语自动处理领域的一项基础性课题,因要求快速处理大规模语料,且在新词检测中需要更多智力因素,在研究中存在较多困难。构建了一个基于海量语料的网络热点新词识别框架,整合了所提出的基于逐层剪枝算法的重复模式提取,基于统计学习模型的新词检测及基于组合特征的新词词性猜测等3个重要算法,用以提高新词识别的处理能力和识别效果。实验和数据分析表明,该框架能高效可靠地从大规模语料中提取重复模式,构造候选新词集合,并能有效实施新词检测和新词属性识别任务,处理效果达到了目前的较好水平。

关 键 词:海量语料  重复模式  逐层剪枝算法  新词检测  组合特征  

Method of new Chinese words identification from large scale network corpora
ZHANG Haijun,LI Yong,YAN Qiqi. Method of new Chinese words identification from large scale network corpora[J]. Computer Engineering and Applications, 2015, 51(5): 208-213
Authors:ZHANG Haijun  LI Yong  YAN Qiqi
Affiliation:1.School of Elementary Education, Xinjiang Normal University, Urumqi 830054, China2.School of Computer Science and Technology, Xinjiang Normal University, Urumqi 830054, China
Abstract:The new words identification based on large scale corpora is a basis task in Chinese automatic processing. There are many difficulties because the study needs not only processing large scale corpora rapidly, but also requiring much intellectual methods. Based on lots of surveys and researches, it constructs a framework of new Chinese words identification from large scale network corpora, which includes the repeat extraction algorithm based on hierarchical pruning, the new word detection method based on statistical learning and the POS guessing method based on combined features. Through lots of experiments and analyses, the framework can extract repeats from large scale corpora and construct the set of candidate new words rapidly, and can carry out the task of new words detecting and POS guessing with high efficiency and good results.
Keywords:large scale corpora  repeat  hierarchical pruning algorithm  new words detection  combined features
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号