首页 | 本学科首页   官方微博 | 高级检索  
     


A framework with modified fast FCM for brain MR images segmentation
Authors:Ze-Xuan Ji [Author Vitae] [Author Vitae]  De-Shen Xia [Author Vitae]
Affiliation:The School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract:Intensity inhomogeneity, noise and partial volume (PV) effect render a challenging task for segmentation of brain magnetic resonance (MR) images. Most of the current MR image segmentation methods focus on only one or two of the effects listed above. In this paper, a framework with modified fast fuzzy c-means for brain MR images segmentation is proposed to take all these effects into account simultaneously and improve the accuracy of image segmentations. Firstly, we propose a new automated method to determine the initial values of the centroids. Secondly, an adaptive method to incorporate the local spatial continuity is proposed to overcome the noise effectively and prevent the edge from blurring. The intensity inhomogeneity is estimated by a linear combination of a set of basis functions. Meanwhile, a regularization term is added to reduce the iteration steps and accelerate the algorithm. The weights of the regularization terms are all automatically computed to avoid the manually tuned parameter. Synthetic and real MR images are used to test the proposed framework. Improved performance of the proposed algorithm is observed where the intensity inhomogeneity, noise and PV effect are commonly encountered. The experimental results show that the proposed method has stronger anti-noise property and higher segmentation precision than other reported FCM-based techniques.
Keywords:Brain MR image  Image segmentation  FCM  Anisotropic weight  Intensity inhomogeneity  Partial volume
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号