首页 | 本学科首页   官方微博 | 高级检索  
     


Developments of mathematical models for prediction of tensile properties of dissimilar AA6061-T6 to Cu welds prepared by friction stir welding process using Zn interlayer
Authors:SHAILESH N PANDYA  JYOTI V MENGHANI
Affiliation:1.Department of Mechanical Engineering,S. V. National Institute of Technology,Surat,India
Abstract:Amount of intermetallics formed at the weld interface in dissimilar friction stir welding may be reduced by use of suitable interlayer materials such as Zn. In the present investigation, mathematical models have been developed for prediction of tensile properties of dissimilar AA6061-T6 to pure Cu welds prepared by friction stir welding process with Zn interlayer. Experiments were planned as per Box–Behnken design of response surface methodology. Three-factor, three-level Box–Behnken design with 15 runs was employed. Three process parameters: tool rotation speed (710, 1000 and 1400 rpm), tool travel speed (28, 56 and 80 mm/min) and tool pin offset (+0.5, +1.0 and +1.5 mm towards AA6061-T6 sheet) were considered. Lacks of fit for the developed models were assessed using analysis of variance (ANOVA). Validities of the developed models were checked by conducting confirmation runs. Predicted and experimental results of confirmation runs were found in reasonable agreements. Microstructural characterization revealed typical microstructure composed of intercalation of base metals. It was observed by X-ray diffraction analysis that use of Zn interlayer coupled with tool offset of +1.0 and +1.5 resulted in elimination of intermetallics of Al–Cu system at the weld interface, improving dissimilar weld quality.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号