首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of carbonization on mechanical and tribological behavior of a copper-phenolic-based friction material
Authors:S.C. Ho
Affiliation:Department of Materials Science and Engineering, National Cheng-Kung University, No. 1 Da-shiue Road, Tainan 70101, Taiwan, Republic of China
Abstract:The effects of carbonization on the mechanical and tribological behavior of a copper/phenolic resin-based semi-metallic friction material were investigated. The results show that a lower carbonization rate leads to a material having higher compressive strength and hardness, as well as fewer cracks. A lower carbonization temperature results in a material with a weak XPS signal of the C-OH bond, while a higher carbonization temperature results in low C-H intensity and increased C-C intensity at the expense of C-H and Cdouble bond; length as m-dashO/C-O groups. The material heat-treated to 400 °C has the highest compressive strength and hardness values. Heat-treating to higher temperature causes both values to decline. Both friction coefficient and wear are increased with increasing carbonization temperature. The material carbonized to 600 °C exhibits an optimum tribological performance. The worn surface of samples without heat treatment or heat-treated to lower temperatures is covered with a smooth but loosely-bonded layer of wear debris. Only a small amount of counter-face material is transferred to the sample surface. The worn surface of samples treated at higher temperatures is covered with rough sliding tracks. A significant amount of counter-face material is transferred onto the sample surface during the sliding. Carbonized samples demonstrate far better high-temperature heat/oxidation resistance than do non-carbonized samples.
Keywords:A. Resins   B. Carbonization   C. Scanning electron microscopy   D. Frictional properties, Mechanical properties
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号