首页 | 本学科首页   官方微博 | 高级检索  
     


Mass and momentum transfer enhancement due to electrogenerated gas bubbles
Authors:F Giron  G Valentin  M Lebouche  A Storck
Affiliation:(1) Laboratoire des Sciences du Génie Chimique, CNRS-ENSIC, 1 rue Grandville, 54042 Nancy, Cedex, France;(2) Laboratoire d'Energétique et de Mécanique Théoriques et Appliquées CNRS (ERA 893), 2 rue de la Citadelle, 54042 Nancy, Cedex, France
Abstract:The effect of electrogenerated gas bubbles with simultaneous bulk liquid flow on the mass and momentum transfer at a wall of an electrolytic cell is experimentally determined. The local mass transfer coefficient and electrolyte shear stress are obtained using two types of microelectrodes imbedded in the channel wall. The influence of the most important parameters (electrolyte velocity, position along the wall, gas electrogeneration rate) on the transfer enhancement is studied and an analogy between mass and momentum transfer in the presence of bubbles is clearly demonstrated from the experimental results. The comparison with classical correlations, valid for systems involving natural turbulence, shows the higher energetic efficiency of devices where the turbulence is artificially generated by electrolytic gas bubbles.Nomenclature A constant parameter in Equation 3 - ¯C time averaged value of the concentration of a reacting species - c 0 molar concentration in the bulk of the solution - d microelectrode diameter - d e hydraulic equivalent diameter - D molecular diffusion coefficient - D t turbulent diffusivity of mass transfer - f/2 friction factor, =tau/gr¯v 2 - h channel thickness - I g electrogeneration rate - i g electrogeneration current density - i l limiting current density on a microelectrode imbedded in the conducting wall - iprimel limiting current density on a microelectrode imbedded in the inert wall - k d local mass transfer coefficient - kprime local mass transfer coefficient on a microelectrode in the non-conducting wall - N M specific mass flux near an interface - Re Reynolds number, = (¯vd e)/v - s velocity gradient, = (part¯v x/party)y = o - s + dimensionless velocity gradient, =sd 2/D - Sc Schmidt number, =v/D - Sh Sherwood number, = (k d x)/D - St Stanton number, =k d/¯v - ¯v, ¯v x electrolyte velocity - v * friction velocity, = (tau/rgr)1/2 - v + normalized velocity, =¯v x /v * - x axial coordinate - y coordinate perpendicular to the wall - y + dimensionless length = (yv *)/v Greek letters agr parameter defined in Equation 8 - delta boundary layer thickness - delta+ dimensionless form of delta, = delta(s/v)1/2 - tau, taux electrolyte shear stress - mgr dynamic viscosity - ngr kinematic viscosity - ngr t momentum transfer diffusivity - rgr specific gravity - sgr2 variance of the fluctuations ofi L oriprime L Paper presented at the International Meeting on Electrolytic Bubbles organized by the Electrochemical Technology Group of the Society of Chemical Industry, and held at Imperial College, London, 13–14 September 1984.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号