首页 | 本学科首页   官方微博 | 高级检索  
     

基于并行点火PCNN模型的图像分割新方法
引用本文:彭真明, 蒋彪, 肖峻, 孟凡斌. 基于并行点火PCNN模型的图像分割新方法. 自动化学报, 2008, 34(9): 1169-1173. doi: 10.3724/SP.J.1004.2008.01169
作者姓名:彭真明  蒋彪  肖峻  孟凡斌
作者单位:1.电子科技大学光电信息学院 成都 610054;;2.吉首大学物理科学与信息工程学院 吉首 416000
基金项目:航空基础科学基金,国防科技预研项目
摘    要:提出一种并行点火脉冲耦合神经网络(Parallelized firing pulse coupled neural networks, PFPCNN)模型的图像分割方法. 首先用改进的Unit-linking PCNN (ULPCNN)模型对图像进行增强, 便于后续的图像分割. 然后采用PFPCNN新模型对增强后的图像进行分割, 最后用最大香农熵方法判定最佳分割结果. 各种复杂场景下的仿真实验及定量评价表明, 本文提出的图像分割方法, 其效果明显优于常规的PCNN分割方法.

关 键 词:脉冲耦合神经网络   并行点火模型   图像增强   最大香农熵   图像分割
收稿时间:2007-06-15
修稿时间:2007-11-12
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号