首页 | 本学科首页   官方微博 | 高级检索  
     


Hybrid Finite Difference Weighted Essentially Non-oscillatory Schemes for the Compressible Ideal Magnetohydrodynamics Equation
Authors:Chang Ho Kim  Kwang-Il You  Youngsoo Ha
Affiliation:1.Department of Computer Engineering, Glocal Campus,Konkuk University,Chungju,Republic of Korea;2.National Fusion Research Institute,Daejeon,Republic of Korea;3.Department of Mathematical Sciences,Seoul National University,Seoul,Republic of Korea
Abstract:In this paper, we present hybrid weighted essentially non-oscillatory (WENO) schemes with several discontinuity detectors for solving the compressible ideal magnetohydrodynamics (MHD) equation. Li and Qiu (J Comput Phys 229:8105–8129, 2010) examined effectiveness and efficiency of several different troubled-cell indicators in hybrid WENO methods for Euler gasdynamics. Later, Li et al. (J Sci Comput 51:527–559, 2012) extended the hybrid methods for solving the shallow water equations with four better indicators. Hybrid WENO schemes reduce the computational costs, maintain non-oscillatory properties and keep sharp transitions for problems. The numerical results of hybrid WENO-JS/WENO-M schemes are presented to compare the ability of several troubled-cell indicators with a variety of test problems. The focus of this paper, we propose optimal and reliable indicators for performance comparison of hybrid method using troubled-cell indicators for efficient numerical method of ideal MHD equations. We propose a modified ATV indicator that uses a second derivative. It is advantageous for differential discontinuity detection such as jump discontinuity and kink. A detailed numerical study of one-dimensional and two-dimensional cases is conducted to address efficiency (CPU time reduction and more accurate numerical solution) and non-oscillatory property problems. We demonstrate that the hybrid WENO-M scheme preserves the advantages of WENO-M and the ratio of computational costs of hybrid WENO-M and hybrid WENO-JS is smaller than that of WENO-M and WENO-JS.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号