首页 | 本学科首页   官方微博 | 高级检索  
     


A Fast Finite Difference Method for a Continuous Static Linear Bond-Based Peridynamics Model of Mechanics
Authors:Zhengguang Liu  Xiaoli Li
Affiliation:1.School of Mathematics,Shandong University,Jinan,China
Abstract:The peridynamic nonlocal continuum model for solid mechanics is an integro-differential equation that does not involve spatial derivatives of the displacement field. Several numerical methods such as finite element method and collocation method have been developed and analyzed in many articles. However, there is no theory to give a finite difference method because the model does not involve spatial derivatives of the displacement field. Here, we consider a finite difference scheme to solve a continuous static bond-based peridynamics model of mechanics based on its equivalent partial integro-differential equations. Furthermore, we present a fast solution technique to accelerate Toeplitz matrix-vector multiplications arising from finite difference discretization respectively. This fast solution technique is based on a fast Fourier transform and depends on the special structure of coefficient matrices, and it helps to reduce the computational work from \(O(N^{3})\) required by traditional methods to O(Nlog\(^{2}N)\) and the memory requirement from \(O(N^{2})\) to O(N) without using any lossy compression, where N is the number of unknowns. Moreover, the applicability and accuracy of the scheme are demonstrated by numerical experiments to support our theoretical analysis.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号