首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波理论的故障特征提取
引用本文:朱成实,吕营,李铁军,张阳,李涛. 基于小波理论的故障特征提取[J]. 沈阳化工学院学报, 2009, 23(3): 255-257
作者姓名:朱成实  吕营  李铁军  张阳  李涛
作者单位:沈阳化工学院,机械工程学院,辽宁,沈阳,110142 
摘    要:在对齿轮进行故障诊断时,采样信号不可避免地受到各种噪声和干扰的污染,所测信号属于典型的非平稳信号.信号的降噪和特征提取是齿轮状态监测和故障诊断的关键环节.小波理论对于非平稳信号的处理非常有效.在MATLAB环境下,利用小波理论对减速器齿轮箱的采样数据进行去噪实验和分析,提取齿轮大周期故障的特征指标,为进一步进行故障诊断奠定基础.

关 键 词:故障诊断  特征提取  小波变换

Fault Feature Based on Wavelet Transform
ZHU Chen-shi,Lü Ying,LI Tie-jun,ZHANG Yang,LI Tao. Fault Feature Based on Wavelet Transform[J]. Journal of Shenyang Institute of Chemical Technolgy, 2009, 23(3): 255-257
Authors:ZHU Chen-shi  Lü Ying  LI Tie-jun  ZHANG Yang  LI Tao
Affiliation:(Shenyang University of Chemical Technology,Shenyang 110142,China)
Abstract:In the gear fault diagnosis,the sampling signal is inevitably polluted by all kinds of noise and interference,and the measured signals are typical non-stationary signals.Therefore,de-noising and feature extraction are the key step in the condition monitoring and fault diagnosis of gearbox.Traditional signal processing methods are unsatisfactory in signal denoising.Wavelet Transform as a signal processing method is developed rapidly in recent years,and it is very effective to analyze non-stationary signals.In this paper,the wavelet transform was applied to the analysis and de-noises on the sampling data of a reducer gearbox using wavelet theory based on the MATLAB environment and the characteristic of the cycle fault of the gear was extracted,which established a foundation for the further fault diagnosis.
Keywords:fault diagnosis  feature extraction  wavelet transform
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号