首页 | 本学科首页   官方微博 | 高级检索  
     


Learning low-rank and discriminative dictionary for image classification
Authors:Liangyue Li  Sheng Li  Yun Fu
Affiliation:Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
Abstract:Dictionary learning plays a crucial role in sparse representation based image classification. In this paper, we propose a novel approach to learn a discriminative dictionary with low-rank regularization on the dictionary. Specifically, we apply Fisher discriminant function to the coding coefficients to make the dictionary more discerning, that is, a small ratio of the within-class scatter to between-class scatter. In practice, noisy information in the training samples will undermine the discriminative ability of the dictionary. Inspired by the recent advances in low-rank matrix recovery theory, we apply low-rank regularization on the dictionary to tackle this problem. The iterative projection method (IPM) and inexact augmented Lagrange multiplier (ALM) algorithm are adopted to solve our objective function. The proposed discriminative dictionary learning with low-rank regularization (D2L2R2) approach is evaluated on four face and digit image datasets in comparison with existing representative dictionary learning and classification algorithms. The experimental results demonstrate the superiority of our approach.
Keywords:Sparse representation   Dictionary learning   Low-rank regularization   Image classification
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号