首页 | 本学科首页   官方微博 | 高级检索  
     

基于提升方案的冗余Haar小波变换与时间序列预测
引用本文:丁宁,周新志. 基于提升方案的冗余Haar小波变换与时间序列预测[J]. 计算机应用, 2007, 27(1): 58-60
作者姓名:丁宁  周新志
作者单位:四川大学,电子信息学院,四川,成都,610065
摘    要:针对小波分析存在的边界问题,提出一种基于提升方案的冗余Haar小波变换(Haar_RLWT)。使用该方法得到的系数序列,在具备时移不变性的同时,消除了右侧边界存在数据畸变的现象,使小波分析技术结合神经网络等传统预测模型的方法应用于时间序列预测任务具备可行性。同时为进一步提高预测效果,引入神经网络集成技术以改善网络泛化能力。实验表明,该综合预测模型预测效果与稳定性优于传统预测模型。

关 键 词:时间序列预测  小波分析  提升方案  边界问题  神经网络集成
文章编号:1001-9081(2007)01-0058-03
收稿时间:2006-07-11
修稿时间:2006-07-112006-09-20

Redundant Haar wavelet transform and time series forecasting based on improved lifting scheme
DING Ning,ZHOU Xin-zhi. Redundant Haar wavelet transform and time series forecasting based on improved lifting scheme[J]. Journal of Computer Applications, 2007, 27(1): 58-60
Authors:DING Ning  ZHOU Xin-zhi
Affiliation:School of Electronics and Information Engineering, Sichuan University, Chengdu Sichuan 610065, China
Abstract:In the view of the boundary problem of wavelets analysis method,a redundant Haar wavelet transform based on Lifting Scheme(Haar_RLWT) was proposed.The wavelet coefficient sequences decomposed by this new method possessed time-invariant capability and eliminated the data distortion phenomenon around right boundary,which made it feasible that the traditional forecasting models such as Neural Networks combined with wavelets analysis can be applied to the time series forecasting task.Furthermore,the application of Neural Network Ensembles improved network generalization and enhanced the forecasting performance.Experiments stipulate that the forecasting effect and rousting of the hybrid forecasting model is superior to traditional forecasting models.
Keywords:time series forecasting  wavelets analysis  lifting scheme  boundary problem  neural network ensembles
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号