首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental and finite element analyses on stress intensity factors of an elliptical surface crack in a circular shaft under tension and bending
Authors:CS Shin  CQ Cai
Affiliation:(1) Department of Mechanical Engineering, National Taiwan University, No.1, Sec.4, Roosevelt Road Taipei, 10617 Taiwan, Republic of China
Abstract:Experimental backtracking technique and finite element analysis have been employed to evaluate the stress intensities along the front of an elliptical surface crack in a cylindrical rod. The finite element solution covers a wide range of crack shapes loaded under end-free and end-constrained axial tension and pure bending. Convenient closed form stress intensity expressions along the whole crack front for each of the loading cases have been given in terms of the crack aspect ratio, crack depth ratio and place ratio.The closed form solutions have been compared against a number of representative solutions collected from the literature. It has been found that different finite element results for the interior points are generally in good mutual agreement, while solutions derived from other methods may sometimes indicate different trends. At the surface interception point agreement is less good because of a complication in the interpretation of stress intensity there.Experimental backtracking results on the end-constrained axial tension case corroborate well with the closed form solution presented. It suggests that the current closed form solution is adequate in describing the stress intensities along the whole crack front of real surface cracks in cylindrical rods.
Keywords:Closed form stress intensity solution  experiment backtracking technique  stress intensity factor  surface crack  
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号