首页 | 本学科首页   官方微博 | 高级检索  
     

高阶流形方法及其应用
引用本文:田荣,栾茂田,杨庆,Keizo Ugai. 高阶流形方法及其应用[J]. 工程力学, 2001, 18(2): 21-26
作者姓名:田荣  栾茂田  杨庆  Keizo Ugai
作者单位:1. 大连理工大学
2. 日本群马大学工学部土木工学科,
基金项目:国家教育部跨世纪优秀人才培养计划研究基金项目,日本平和中岛财团国际学术交流与共同研究项目资助
摘    要:流形方法是一种可进行连续与非连续变形问题分析的灵活而有效的数值计算方法。本文详细地推导了二阶流形方法的具体计算列式,分别开发了一阶流形方法与二阶流形方法的计算程序.通过实例计算表明:提高覆盖函数的阶次可有效地提高流形方法的计算精度。

关 键 词:有限单元法  非连续变形分析  流形方法  有限覆盖  高阶流形方法
文章编号:1000-4750(2001)02-021-06

FUNDAMENTALS AND APPLICATIONS OF HIGH-ORDER MANIFOLD METHOD
TIAN Rong,LUAN Mao-tian,YANG Qing,Keizo Ugai. FUNDAMENTALS AND APPLICATIONS OF HIGH-ORDER MANIFOLD METHOD[J]. Engineering Mechanics, 2001, 18(2): 21-26
Authors:TIAN Rong  LUAN Mao-tian  YANG Qing  Keizo Ugai
Abstract:Manifold Method (MM) developed by Dr. Shi is a noel and very versatile numerical method. which is applicable to both continuous deformation problems and discontinuous deformation problems in structural and geotechnical engineering in a unified framework. In this paper, the generalized mathematical formulations of the manifold method using polynomial cover functions with high orders are presented. Accordingly, the manifold method using the second-order polynomial cover functions is given in detail. Afterwards, the Visual C++ computer programs of the MM using the second and first-order polynomial cover functions have been developed respectively, and applied to the analysis of a purely-bending beam subjected to bending moment. The calculated results with use of the 2nd-order MM agree fairly Well with theoretical solutions. However, the results computed for the same model using the 1st-Order MM have marked deviation ho the theoretical values. The comparison between the calculated results for this numerical example indicates that the computational accuracy of the MM can be greatly improved if a higher order cover function is employed. Therefore, it is practically necessary and important to develop a higher order manifold method for complicated deformation problems.
Keywords:finite element method (FEM)  discontinuous deformation analysis (DDA)  manifold method (MM)  finite cover  high-order manifold method
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号