首页 | 本学科首页   官方微博 | 高级检索  
     

粒子群优化神经网络在高压断路器机械故障诊断中的应用
引用本文:曾晓林,薛建辉,洪 刚. 粒子群优化神经网络在高压断路器机械故障诊断中的应用[J]. 电网与水力发电进展, 2010, 26(6): 57-61
作者姓名:曾晓林  薛建辉  洪 刚
作者单位:曾晓林,薛建辉,ZENG Xiao-lin,XUE Jian-hui(沦州供电公司,河北,沧州,061000);洪刚,HONG Gang(西安理工大学电力工程系,西安,710048) 
摘    要:提出了一种以振动信号小波包特征熵为特征向量的高压断路器机械故障诊断的智能算法,该算法利用小波包分解原理将高压断路器振动信号分解到不同的频段中,计算各频段的能量熵值,并将其作为神经网络的输入向量,同时利用粒子群算法对神经网络进行优化,以提高故障诊断的精度。试验结果表明:该方法不仅能够取得良好的分类效果,而且诊断速度与精度均高于传统神经网络算法,适用于高压断路器机械故障诊断

关 键 词:高压断路器  神经网络  粒子群算法  故障诊断

Application of Neural Network Based on Particle Swarm Optimization in Mechanical Fault Diagnosis of High-Voltage Circuit Breaker
ZENG Xiao-lin,XUE Jian-hui and HONG Gang. Application of Neural Network Based on Particle Swarm Optimization in Mechanical Fault Diagnosis of High-Voltage Circuit Breaker[J]. Advance of Power System & Hydroelectric Engineering, 2010, 26(6): 57-61
Authors:ZENG Xiao-lin  XUE Jian-hui  HONG Gang
Affiliation:1. Cangzhou Power Supply Company , Cangzhou 061000, Hebei Province, China; 2. Department of Electrical Engineering, Xi'an University of technology, Xi'an 710048, Shaanxi Province, China)
Abstract:An intelligent algorithm based on wavelet packet-energy entropy (WP-EE) for mechanical fault diagnosis of high-voltage circuit breaker is presented, in which wavelet packet was used to decompress the vibration signal into different frequency bands. WP-EE was then extracted to construct characteristic vectors of signals and is used as an input of neural network, which was optimized by particle swarm optimization (PSO). The experimental results show that the algorithm can obtain satisfied classification result, and diagnosis speed and accuracy is better than traditional neural network algorithm, thus the proposed algorithm is suitable for mechanical fault diagnosis of HV circuit breaker.
Keywords:HV circuit breaker  neural network  particle swarm optimization  fault diagnosis
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《电网与水力发电进展》浏览原始摘要信息
点击此处可从《电网与水力发电进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号