首页 | 本学科首页   官方微博 | 高级检索  
     


Power converter line synchronization using a discrete Fourier transform (DFT) based on a variable sample rate
Authors:McGrath  BP Holmes  DG Galloway  JJH
Affiliation:Groupe Convertisseurs Statiques, Toulouse, France;
Abstract:Line synchronization of grid connected power converters is a well recognized problem when the grid is weak, or derives from a remote area power supply with poor frequency regulation. Such systems can suffer significant line voltage distortion due to notches caused by power device switching and/or low frequency harmonic content, which can easily corrupt the output of a conventional zero crossing detector. This paper presents a method of filtering the incoming grid voltage using a recursive discrete Fourier transform (DFT). The filter provides a high degree of noise immunity but does produce a phase shift between the incoming grid voltage and the filtered output voltage when the DFT time window does not match the grid period. Two methods of compensating this phase shift are presented, based on tracking the drift in the phase predicted by the recursive DFT. The first method makes a deadbeat adjustment to the time window (thereby changing the sampling rate) while the second approach calculates the phase error based on the linear phase response of the DFT. These compensation algorithms can correct for discrepancies of at least 25% between the DFT time window and the system period, and can track grid frequencies with slew rates as high as 40 Hz/s with negligible phase shift (<2/spl deg/) between the grid voltage input and the filtered output waveforms.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号