首页 | 本学科首页   官方微博 | 高级检索  
     


Attenuation of lung graft reperfusion injury by a nitric oxide donor
Authors:MS Bhabra  DN Hopkinson  TE Shaw  TL Hooper
Affiliation:Department of Cardiothoracic Surgery, Wythenshawe Hospital, Manchester, United Kingdom.
Abstract:OBJECTIVE: One of the primary features of ischemia-reperfusion injury is reduced production of protective autocoids, such as nitric oxide, by dysfunctional endothelium. Administration of a nitric oxide donor during reperfusion of lung grafts may therefore be beneficial through modulation of vascular tone and leukocyte and platelet function. METHODS: Rat lung grafts were flushed with University of Wisconsin solution and reperfused for 1 hour in an ex vivo model incorporating a support animal. Group I grafts (n = 6) were reperfused immediately after explantation, group II (n = 6) and III (n = 5) grafts after 24 hours of storage at 4 degrees C. In group III, glyceryl trinitrate, a nitric oxide donor, was administered during the first 10 minutes of reperfusion at a rate of 200 micrograms/min. In an additional group (n = 5), 200 micrograms/min hydralazine was administered instead, to assess the effect of vasodilation alone. RESULTS: Graft function in group II deteriorated compared with that in group I, with significant reduction of graft effluent oxygen tension and blood flow and elevation of pulmonary artery pressure, peak airway pressure, and wet/dry weight ratio. In contrast, in group III, glyceryl trinitrate treatment improved graft function to baseline levels in all these parameters. Administration of hydralazine, meanwhile, produced mixed results with only two out of five grafts functioning at control levels. CONCLUSIONS: In this model, administration of glyceryl trinitrate to supplement the nitric oxide pathway in the early phase of reperfusion has a sustained beneficial effect on lung graft function after 24-hour hypothermic storage, probably through mechanisms beyond vasodilation alone.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号