首页 | 本学科首页   官方微博 | 高级检索  
     


On the number of term orders
Authors:Gunter Ritter  Volker Weispfenning
Affiliation:(1) Fakultät für Mathematik und Informatik der Universität, W-8390 Passau, Federal Republic of Germany
Abstract:By an admissible order on a finite subsetQ of Qopfn we mean the restriction toQ of a linear order on Qopfn compatible with the group structure of Qopfn and such that Nopfn is contained in the positive cone of the order. We first derive upper and lower bounds on the number of admissible orders on a given setQ in terms of the dimensionn and the cardinality ofQ. Better estimates are possible if the setQ enjoys symmetry properties and in the case whereQ is a discrete hyperbox of the form
$$mathop Pi limits_{k = 1}^n [1,d_k ].$$
In the latter case, we also give asymptotic results as
$$mathop {min }limits_{1  leqq  k  leqq n} d_k  to infty $$
dk rarr infin for fixedn. We finally present algorithms which compute the set of admissible orders that extend a given binary relation onQ and their number. The algorithms are useful in connection with the construction of universal Gröbner bases.AMS Classification: primary 06F20 secondary 06-04, 11N25
Keywords:Term order  Separating hyperplane  Grö  bner basis  Universal Grö  bner basis
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号