首页 | 本学科首页   官方微博 | 高级检索  
     


Opsin/all-trans-retinal complex activates transducin by different mechanisms than photolyzed rhodopsin
Authors:S J?ger  K Palczewski  KP Hofmann
Affiliation:Institut für Medizinische Physik und Biophysik, Charité, Humboldt-Universit?t zu Berlin, Ziegelstrasse 5-9, Germany.
Abstract:In rhodopsin, the 11-cis-retinal chromophore forms a complex with Lys296 of opsin via a protonated Schiff base. Absorption of light initiates the activation of rhodopsin by cis/trans photoisomerization of retinal. Thermal relaxation through different intermediates leads into the metarhodopsin states which bind and activate transducin (Gt) and rhodopsin kinase (RK). all-trans-Retinal also recombines with opsin independent of light, forming activating species of the receptor. In this study, we examined the mechanism by which all-trans-retinal activates opsin. To exclude other amines except active site Lys296 from formation of Schiff bases, we reductively methylated rhodopsin (PM-rhodopsin), which we then bleached to generate PM-opsin. Using spectroscopic methods and a Gt activation assay, we found that all-trans-retinal interacted with PM-opsin, producing a noncovalent complex that activated Gt. The residual nucleotide exchange in Gt catalyzed by opsin was approximately 1/250 lower relative to that of photoactivated rhodopsin (pH 8.0, 23 degrees C). Addition of equimolar all-trans-retinal led to an occupancy of one-tenth of the putative retinal binding site(s) of opsin and enhanced the Gt activation rate 2-fold. When the concentration of all-trans-retinal was increased to saturation, the Gt activation rate of the opsin/all-trans-retinal complex was approximately 1/33 lower compared to that of photoactivated rhodopsin. We conclude that all-trans-retinal can form a noncovalent complex with opsin that activates Gt by different mechanisms than photolyzed rhodopsin.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号