首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进ABC与LS-SVM算法的电力负荷预测的研究
引用本文:李文江,陈阳. 基于改进ABC与LS-SVM算法的电力负荷预测的研究[J]. 传感器与微系统, 2013, 32(5)
作者姓名:李文江  陈阳
作者单位:辽宁工程技术大学电气与控制工程学院,辽宁葫芦岛,125105
摘    要:为了解决电力负荷的非线性等问题和帮助电力企业迅速地制定电力的预计交易量,提出一种建立在最小二乘支持向量机算法基础上的电力负荷预测方法。采用改进的ABC算法优化惩罚因子C和核系数σ,再将最优解赋给LS-SVM用以预测。仿真结果证明:基于改进ABC与LS-SVM算法的电力负荷预测方法具有较高的预测精度,更小的误差,是一种有效的预测方法。

关 键 词:电力负荷  预测  混沌人工蜂群算法  最小二乘支持向量机

Research on prediction of electric power load based on improved ABC and LS-SVM algorithm
LI Wen-jiang , CHEN Yang. Research on prediction of electric power load based on improved ABC and LS-SVM algorithm[J]. Transducer and Microsystem Technology, 2013, 32(5)
Authors:LI Wen-jiang    CHEN Yang
Abstract:In order to solve problems such as nonlinear of power load and help electric power enterprise quickly formulate power expected volume of trade,a kind of method based on least squares support vector machine(LS-SVM) algorithm to forecast electric power load is proposed.Using improved ABC algorithm to optimize penalty factor C and nuclear factor σ,then the optimal solution can be assigned to LS-SVM to predict.The simulation results show that the method based on improved ABC and LS-SVM algorithm to forecast electric power load has high precision,less error,it is a kind of effective prediction method.
Keywords:electric power load  forecast  chaos artificial bee colony(CABC) algorithm  least squares support vector machine(LS-SVM)
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号