首页 | 本学科首页   官方微博 | 高级检索  
     

还原焙烧—磁选工艺回收马拉维某钛粗精矿中的钛和铁
引用本文:彭程, 周迎春, 李国杰, 吉榆师, 喻连香, 汤优优. 还原焙烧-磁选工艺回收马拉维某钛粗精矿中的钛和铁[J]. 矿产保护与利用, 2022, 42(1): 150-157. doi: 10.13779/j.cnki.issn1001-0076.2022.01.022
作者姓名:彭程  周迎春  李国杰  吉榆师  喻连香  汤优优
作者单位:海南国际资源(集团)股份有限公司,海南 海口570206;广东省资源综合利用研究所,广东 广州510650
摘    要:由于马拉维钛铁矿资源中铁和钛矿物关系复杂,用常规的重选、磁选和电选方法难以直接分离,不能选出合格的钛精矿,仅能获得低品级的钛粗精矿。本研究用MLA(矿物定量自动检测系统)和SEM(扫描电镜)等测试手段对钛粗精矿进行了工艺矿物学研究,研究结果表明,该钛粗精矿中钛赤铁矿和赤铁矿合计含量为16.33%,钛铁矿含量为79.49%,由于钛与铁呈固溶分离或氧化蚀变形成了钛赤铁矿,导致钛粗精矿中钛、铁难以有效分离,因此,采用焙烧工艺将赤铁矿还原成磁铁矿,利用磁铁矿与钛铁矿的磁性差异特征进行磁选分离,有效回收利用钛粗精矿中的铁和钛。钛粗精矿经过还原焙烧—磁选工艺处理后获得铁精矿和钛精矿,铁精矿中Fe含量为56.71%、回收率13.50%,钛精矿中的TiO2含量为49.10%、产率为65.57%、回收率为77.57%。该试验使钛粗精矿中钛铁矿与赤铁矿得到高效分离,为马拉维钛铁矿资源高效综合回收利用提供了技术途径。

关 键 词:钛铁矿  赤铁矿  磁铁矿  工艺矿物学  还原焙烧
收稿时间:2021-01-20

Recovery of Titanium and Iron from Titanium Rough Concentrate in Malawi by Reduction Roasting-Magnetic Separation Process
PENG Cheng, ZHOU Yingchun, LI Guojie, JI Yushi, YU Lianxiang, TANG Youyou. Recovery of Titanium and Iron from Titanium Rough Concentrate in Malawi by Reduction Roasting-Magnetic Separation Process[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 150-157. doi: 10.13779/j.cnki.issn1001-0076.2022.01.022
Authors:PENG Cheng  ZHOU Yingchun  LI Guojie  JI Yushi  YU Lianxiang  TANG Youyou
Affiliation:1.Hainan International Resources Group Co., Ltd, Haikou 570206, Hainan, China;; 2.Guangdong Institute of Resources Utilization, Guangzhou 510650, Guangdong, China
Abstract:Due to the complexity of iron and titanium minerals in Malawian, only low grade titanium concentrate can be obtained by conventional gravity separation, magnetic separation and electric separation. Through MLA (automatic quantitative analysis system of mineral parameters) and SEM (scanning electron microscope), the process mineralogy of titanium rough concentrate was studied. The results showed that the content of Ti-hematite and hematite in Ti rough concentrate was 16.33%, ilmenite content was 79.49%. It is difficult to effectively separate titanium and iron in titanium rough concentrate due to hematite formed by oxidation and alteration. Therefore hematite is reduced to magnetite by roasting and then magnetic separation is carried out in virtue of magnetic difference between magnetite and ilmenite. Iron and titanium in titanium rough concentrate can be effectively recovered and utilized. Iron concentrate and titanium concentrate were obtained by reduction roasting and magnetic separation process. At the same time, secondary iron concentrate and secondary titanium concentrate were comprehensively recycled. Fe content in iron concentrate was 56.71%, recovery rate was 13.50%. TiO2 content in titanium concentrate was 49.10%, yield was 65.57%. Fe content in secondary iron concentrate was 51.08%, recovery rate was 10.29%. TiO2 content in secondary titanium concentrate was 41.51%, yield was 10.57%。The tests solved the technical problem of separating ilmenite from hematite in titanium rough concentrate, and provided a technical way for comprehensive and effective recovery and utilization of Malawian ilmenite. 
Keywords:ilmenite  hematite  magnetite  process mineralogy  reduction roasting
本文献已被 万方数据 等数据库收录!
点击此处可从《矿产保护与利用》浏览原始摘要信息
点击此处可从《矿产保护与利用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号